Scattering of a plane sound wave by elastic a cylinder with an inhomogeneous anisotropic coating in the presence of a plane
Čebyševskij sbornik, Tome 23 (2022) no. 3, pp. 207-223.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the article the direct and inverse problems of scattering of a harmonic plane sound wave by a homogeneous isotropic cylinder with inhomogeneous anisotropic elastic coating in the presence of the underlying flat surface are considered. It is assumed that the coating material of cylinder is radially inhomogeneous and transverse-isotropic, the inhomogeneity laws of the coating material described by continuous radial coordinate functions, the body is placed in an ideal fluid, underlying surface is perfect (absolutely hard or acoustically soft). An analytical solution of the direct diffraction problem is obtained. The scattered acoustic field and wave fields in the cylinder and its coating are defined. Based on the solution of the direct problem a mathematical modeling of an inhomogeneous anisotropic coating of a elastic cylinder providing the least sound reflection done. The inhomogeneity laws of the coating material ensuring the minimum sound scattering in the given frequency range at a fixed angle of observation and also in the given angular sector of observation at a fixed frequency are obtained. The functionals expressing the average intensity of sound scattering are built. Minimization of the functionals are implemented with the help of the burnout simulation algorithm. The results of numerical calculations of frequency dependencies of intensity of the scatter acoustic field at the optimal parabolic inhomogeneity laws are presented for different types of transverse-isotropic coatings.
Keywords: sound waves, scattering, homogeneous elastic cylinder, inhomogeneous anisotropic coating.
@article{CHEB_2022_23_3_a14,
     author = {L. A. Tolokonnikov and D. Yu. Efimov},
     title = {Scattering of a plane sound wave by elastic a cylinder with an inhomogeneous anisotropic coating in the presence of a plane},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {207--223},
     publisher = {mathdoc},
     volume = {23},
     number = {3},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2022_23_3_a14/}
}
TY  - JOUR
AU  - L. A. Tolokonnikov
AU  - D. Yu. Efimov
TI  - Scattering of a plane sound wave by elastic a cylinder with an inhomogeneous anisotropic coating in the presence of a plane
JO  - Čebyševskij sbornik
PY  - 2022
SP  - 207
EP  - 223
VL  - 23
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2022_23_3_a14/
LA  - ru
ID  - CHEB_2022_23_3_a14
ER  - 
%0 Journal Article
%A L. A. Tolokonnikov
%A D. Yu. Efimov
%T Scattering of a plane sound wave by elastic a cylinder with an inhomogeneous anisotropic coating in the presence of a plane
%J Čebyševskij sbornik
%D 2022
%P 207-223
%V 23
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2022_23_3_a14/
%G ru
%F CHEB_2022_23_3_a14
L. A. Tolokonnikov; D. Yu. Efimov. Scattering of a plane sound wave by elastic a cylinder with an inhomogeneous anisotropic coating in the presence of a plane. Čebyševskij sbornik, Tome 23 (2022) no. 3, pp. 207-223. http://geodesic.mathdoc.fr/item/CHEB_2022_23_3_a14/

[1] Honarvar F., Sinclair A., “Scattering of an obliquely incident plane wave from a circular clad rod”, J. Acoust. Soc. Am., 102:1 (1997), 41–48 | DOI

[2] Kosarev O. I., “Difraktsiya zvuka na uprugoi tsilindricheskoi obolochke s pokrytiem”, Problemy mashinostroeniya i nadezhnosti mashin, 46:1 (2012), 34–37

[3] Romanov A. G., Tolokonnikov L. A., “Rasseyanie zvukovykh voln tsilindrom s neodnorodnym uprugim pokrytiem”, Prikladnaya matematika i mekhanika, 75:5 (2011), 850–857 | MR | Zbl

[4] Tolokonnikov L. A., “Rasseyanie naklonno padayuschei ploskoi zvukovoi volny uprugim tsilindrom s neodnorodnym pokrytiem”, Izvestiya Tulskogo gos. un-ta. Estestvennye nauki, 2013, no. 2-2, 265–274

[5] Larin N. V., Tolokonnikov L. A., “Rasseyanie ploskoi zvukovoi volny uprugim tsilindrom s diskretno-sloistym pokrytiem”, Prikladnaya matematika i mekhanika, 79:2 (2015), 242–250 | Zbl

[6] Tolokonnikov L. A., Larin N. V., Skobeltsyn S. A., “Modelirovanie neodnorodnogo pokrytiya uprugogo tsilindra s zadannymi zvukootrazhayuschimi svoistvami”, Prikladnaya mekhanika i tekhnicheskaya fizika, 2017, no. 4, 189–199 | Zbl

[7] Tolokonnikov L. A., “Difraktsiya ploskoi zvukovoi volny na uprugom tsilindre s neodnorodnym pokrytiem, nakhodyaschemsya vblizi ploskoi poverkhnosti”, Izvestiya Tulskogo gos. un-ta. Tekhnicheskie nauki, 2018, no. 9, 276–289

[8] Tolokonnikov L. A., Efimov D. Yu., “Difraktsiya zvukovykh voln na uprugom tsilindre s neodnorodnym pokrytiem, raspolozhennom vblizi poverkhnosti uprugogo poluprostranstva”, Prikladnaya matematika i mekhanika, 85:6 (2021), 779–791 | DOI | Zbl

[9] Tolokonnikov L. A., “Rasseyanie zvukovykh voln tsilindrom s radialno-neodnorodnym uprugim pokrytiem v ploskom volnovode”, Chebyshevckii sbornik, 20:1 (2019), 270–281

[10] Tolokonnikov L. A, Larin N. V., “Rasseyanie tsilindrom s neodnorodnym pokrytiem zvukovykh voln, izluchaemykh lineinym istochnikom, v ploskom volnovode”, Matematicheskoe modelirovanie, 33:8 (2021), 97–113 | DOI | Zbl

[11] Tolokonnikov L. A., Belkin A. E., “Opredelenie zakonov neodnorodnosti pokrytiya tsilindra, nakhodyaschegosya v ploskom volnovode, dlya obespecheniya minimalnogo otrazheniya zvuka”, Chebyshevskii sbornik, 21:4 (2020), 354–368 | DOI | MR | Zbl

[12] Tolokonnikov L. A., Efimov D. Yu., “Modelirovanie neodnorodnogo anizotropnogo pokrytiya uprugogo tsilindra, obespechivayuschego naimenshee otrazhenie zvuka”, Chebyshevskii sbornik, 23:1 (2022), 293–311 | DOI | MR

[13] Shenderov E. L., Volnovye zadachi gidroakustiki, Sudostroenie, L., 1972, 352 pp.

[14] Novatskii V., Teoriya uprugosti, Mir, M., 1975, 872 pp.

[15] Brekhovskikh L. M., Volny v sloistykh sredakh, Nauka, M., 1973, 344 pp.

[16] Ivanov E. A., Difraktsiya elektromagnitnykh voln na dvukh telakh, Nauka i tekhnika, Minsk, 1968, 584 pp.

[17] Lopatin A.S., “Metod otzhiga”, Stokhasticheskaya optimizatsiya v informatike, 1, Izd-vo SPbGU, SPb., 2005, 133–149

[18] Zavyalov Yu. S., Kvasov B. I., Miroshnichenko V. L., Metody splain-funktsii, Nauka, M., 1980, 352 pp. | MR