Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHEB_2022_23_3_a11, author = {O. G. Styrt}, title = {Topological and homological properties of the orbit space of a~simple three-dimensional compact linear {Lie} group}, journal = {\v{C}eby\v{s}evskij sbornik}, pages = {169--177}, publisher = {mathdoc}, volume = {23}, number = {3}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CHEB_2022_23_3_a11/} }
TY - JOUR AU - O. G. Styrt TI - Topological and homological properties of the orbit space of a~simple three-dimensional compact linear Lie group JO - Čebyševskij sbornik PY - 2022 SP - 169 EP - 177 VL - 23 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CHEB_2022_23_3_a11/ LA - ru ID - CHEB_2022_23_3_a11 ER -
O. G. Styrt. Topological and homological properties of the orbit space of a~simple three-dimensional compact linear Lie group. Čebyševskij sbornik, Tome 23 (2022) no. 3, pp. 169-177. http://geodesic.mathdoc.fr/item/CHEB_2022_23_3_a11/
[1] Mikhailova M. A., “O faktorprostranstve po deistviyu konechnoi gruppy, porozhdennoi psevdootrazheniyami”, Izv. AN SSSR. Ser. matem., 1984, no. 1(48), 104–126 | DOI | Zbl
[2] Lange C., When is the underlying space of an orbifold a topological manifold?, arXiv: math.GN/1307.4875
[3] Styrt O. G., “O prostranstve orbit kompaktnoi lineinoi gruppy Li s kommutativnoi svyaznoi komponentoi”, Trudy MMO, 70, 2009, 235–287 | MR | Zbl
[4] Styrt O. G., “O prostranstve orbit trekhmernoi kompaktnoi lineinoi gruppy Li”, Izv. RAN. Ser. matem., 75:4 (2011), 165–188 | DOI | MR | Zbl
[5] Styrt O. G., “O prostranstve orbit neprivodimogo predstavleniya spetsialnoi unitarnoi gruppy”, Trudy MMO, 74, no. 1, 2013, 175–199 | Zbl
[6] Styrt O. G., “On the orbit spaces of irreducible representations of simple compact Lie groups of types $B$, $C$, and $D$”, J. Algebra, 415 (2014), 137–161 | DOI | MR | Zbl
[7] Styrt O. G., Topological and homological properties of the orbit space of a compact linear Lie group with commutative connected component, 2016, arXiv: math.AG/1607.06907 | MR
[8] Styrt O. G., “Topologicheskie i gomologicheskie svoistva prostranstva orbit kompaktnoi lineinoi gruppy Li s kommutativnoi svyaznoi komponentoi”, Vestnik MGTU im. N. E. Baumana. Ser. Est. nauki, 2018, no. 3, 68–81 | DOI
[9] Styrt O. G., “Topologicheskie i gomologicheskie svoistva prostranstva orbit kompaktnoi lineinoi gruppy Li s kommutativnoi svyaznoi komponentoi. Vyvody”, Vestnik MGTU im. N. E. Baumana. Ser. Est. nauki, 2018, no. 6, 48–63 | DOI
[10] Bredon G., Vvedenie v teoriyu kompaktnykh grupp preobrazovanii, Nauka, M., 1980, 440 pp.