Topological and homological properties of the orbit space of a~simple three-dimensional compact linear Lie group
Čebyševskij sbornik, Tome 23 (2022) no. 3, pp. 169-177
Voir la notice de l'article provenant de la source Math-Net.Ru
The article is devoted to the question whether the orbit space of a compact linear group is a topological manifold and a homological manifold. In the paper, the case of a simple three-dimensional group is considered. An upper bound is obtained for the sum of the half-dimension integral parts of the irreducible components of a representation whose quotient space is a homological manifold, that enhances an earlier result giving the same bound if the quotient space of a representation is a smooth manifold. The most of the representations satisfying this bound are also researched before. In the proofs, standard arguments from linear algebra, theory of Lie groups and algebras and their representations are used.
Keywords:
Lie group, linear representation of a group, topological quotient space of an action, topological manifold, homological manifold.
@article{CHEB_2022_23_3_a11,
author = {O. G. Styrt},
title = {Topological and homological properties of the orbit space of a~simple three-dimensional compact linear {Lie} group},
journal = {\v{C}eby\v{s}evskij sbornik},
pages = {169--177},
publisher = {mathdoc},
volume = {23},
number = {3},
year = {2022},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/CHEB_2022_23_3_a11/}
}
TY - JOUR AU - O. G. Styrt TI - Topological and homological properties of the orbit space of a~simple three-dimensional compact linear Lie group JO - Čebyševskij sbornik PY - 2022 SP - 169 EP - 177 VL - 23 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CHEB_2022_23_3_a11/ LA - ru ID - CHEB_2022_23_3_a11 ER -
O. G. Styrt. Topological and homological properties of the orbit space of a~simple three-dimensional compact linear Lie group. Čebyševskij sbornik, Tome 23 (2022) no. 3, pp. 169-177. http://geodesic.mathdoc.fr/item/CHEB_2022_23_3_a11/