One note on an infinity
Čebyševskij sbornik, Tome 23 (2022) no. 2, pp. 209-211.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the paper an interconnection of ortodox laws belief and the notion of infinity in mathematical analysis is described. Essentially use the statement of evangelists and apostles. Hence the comtability of mathematics and christian teology is established.
Keywords: infinity sets, limit, the completeness of the real axis, Coushi criteria.
@article{CHEB_2022_23_2_a14,
     author = {H. M. Saliba},
     title = {One note on an infinity},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {209--211},
     publisher = {mathdoc},
     volume = {23},
     number = {2},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2022_23_2_a14/}
}
TY  - JOUR
AU  - H. M. Saliba
TI  - One note on an infinity
JO  - Čebyševskij sbornik
PY  - 2022
SP  - 209
EP  - 211
VL  - 23
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2022_23_2_a14/
LA  - ru
ID  - CHEB_2022_23_2_a14
ER  - 
%0 Journal Article
%A H. M. Saliba
%T One note on an infinity
%J Čebyševskij sbornik
%D 2022
%P 209-211
%V 23
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2022_23_2_a14/
%G ru
%F CHEB_2022_23_2_a14
H. M. Saliba. One note on an infinity. Čebyševskij sbornik, Tome 23 (2022) no. 2, pp. 209-211. http://geodesic.mathdoc.fr/item/CHEB_2022_23_2_a14/

[1] Blazhennyi Avgustin. O Grade Bozhiem, v. I-IV, Izd-vo Spaso-Preobrazhenskogo Valaamskogo Monastyrya, M., 1994

[2] Svyatoi Ioann Damaskin. Tochnoe izlozhenie pravoslavnoi very, gl. VIII, v. 1 http://www.vehi.net/damaskin/index.html

[3] Svyatitel Ignatii Bryanchaninov. O obraze i podobii Bozhiikh v cheloveke. Tvoreniya svyatitelya Ignatiya Bryanchaninova v 7 tomakh, v. II, Izd. Donskogo monastyrya i izd-va “Pravilo Very”, M., 1993, 128–136

[4] Raushenbakh B.V., “Logika troichnosti”, Voprosy filosofii, 1993, no. 3, 63

[5] Kh.M. Saliba, “Ob odnom podobii Svyatoi Troitsy”, Chebyshevckii sbornik, 12:4 (2011), 272–277