Billiard books of low complexity and realization of Liouville foliations of integrable systems
Čebyševskij sbornik, Tome 23 (2022) no. 1, pp. 53-82.

Voir la notice de l'article provenant de la source Math-Net.Ru

In paper we study the topology of integrable billiard books, (i.e. systems on CW-complexes glued from flat domains of confocal billiards. Significant progress has been made in proving the local version of the billiard Fomenko conjecture. In particular, billiards were used to realize an important class of subgraphs of the Fomenko - Zieschang graph invariants (that classify Liouville foliations of integrable systems in topological sense). Then we classify in combinatorial sense billiard books of low complexity (with a small number of one-dimensional cells), glued from flat domains that contain foci of the family of quadrics. Calculation of Fomenko–Zieschang invariants for these systems is in progress.
Keywords: integrable billiards, Fomenko-Zieschang invariant, permutation.
@article{CHEB_2022_23_1_a5,
     author = {V. V. Vedyushkina and V. A. Kibkalo},
     title = {Billiard books of low complexity and realization of {Liouville} foliations of integrable systems},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {53--82},
     publisher = {mathdoc},
     volume = {23},
     number = {1},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2022_23_1_a5/}
}
TY  - JOUR
AU  - V. V. Vedyushkina
AU  - V. A. Kibkalo
TI  - Billiard books of low complexity and realization of Liouville foliations of integrable systems
JO  - Čebyševskij sbornik
PY  - 2022
SP  - 53
EP  - 82
VL  - 23
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2022_23_1_a5/
LA  - ru
ID  - CHEB_2022_23_1_a5
ER  - 
%0 Journal Article
%A V. V. Vedyushkina
%A V. A. Kibkalo
%T Billiard books of low complexity and realization of Liouville foliations of integrable systems
%J Čebyševskij sbornik
%D 2022
%P 53-82
%V 23
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2022_23_1_a5/
%G ru
%F CHEB_2022_23_1_a5
V. V. Vedyushkina; V. A. Kibkalo. Billiard books of low complexity and realization of Liouville foliations of integrable systems. Čebyševskij sbornik, Tome 23 (2022) no. 1, pp. 53-82. http://geodesic.mathdoc.fr/item/CHEB_2022_23_1_a5/

[1] Birkgof Dzh., Dinamicheskie sistemy, Izd. dom «Udmurtskii universitet», 1999

[2] Tabachnikov S. L., Geometriya i billiardy, NITs «Regulyarnaya i khaoticheskaya dinamika», Izhevskii insn. komp. issled., M.-Izhevsk, 2011

[3] Dragovich V., Radnovich M., Integriruemye billiardy, kvadriki i mnogomernye porizmy Ponsele, NITs “Regulyarnaya i khaoticheskaya dinamika”, M.–Izhevsk, 2010

[4] Kozlov V.V., Treschev D.V., Geneticheskoe vvedenie v dinamiku sistem s udarami, Izd-vo MGU, M., 1991

[5] Glutyuk A., “On polynomially integrable Birkhoff billiards on surfaces of constant curvature”, J. of the Europ. Math. Soc., 23:3 (2021), 995–1049 | DOI | MR

[6] Kaloshin V., Sorrentino A., “On the local Birkhoff conjecture for convex billiards”, Ann. of Math., 188:1 (2018), 315–380 | DOI | MR | Zbl

[7] Vedyushkina V. V., Kharcheva I. S., “Billiardnye knizhki modeliruyut vse trekhmernye bifurkatsii integriruemykh gamiltonovykh sistem”, Matem. sb., 209:12 (2018), 17–56 | DOI | MR | Zbl

[8] Vedyushkina V. V., Fomenko A. T., “Bilyardy i integriruemost v geometrii i fizike. Novyi vzglyad i novye vozmozhnosti”, Vestn. Mosk. Univ., Matem. Mekh., 2019, no. 3, 15–25 | MR | Zbl

[9] Fokicheva V. V., Fomenko A. T., “Integriruemye billiardy modeliruyut vazhnye integriruemye sluchai dinamiki tverdogo tela”, DAN, 465:2 (2015), 150–153 | MR | Zbl

[10] Fomenko A. T., “Topologiya poverkhnostei postoyannoi energii nekotorykh integriruemykh gamiltonovykh sistem i prepyatstviya k integriruemosti”, Izv. AN SSSR. Ser. matem., 50:6 (1986), 1276–1307 | MR | Zbl

[11] Fomenko A. T, Tsishang Kh., “Topologicheskii invariant i kriterii ekvivalentnosti integriruemykh gamiltonovykh sistem s dvumya stepenyami svobody”, Izv. AN SSSR. Ser. matem., 54:3 (1990), 546–575 | Zbl

[12] Bolsinov A. V., Fomenko A. T., Integriruemye gamiltonovy sistemy. Geometriya, topologiya, klassifikatsiya, v. 1, 2, Izd. dom “Udmurtskii universitet”, Izhevsk, 1999 | MR

[13] Vedyushkina V. V., Kharcheva I. S., “Billiardnye knizhki realizuyut vse bazy sloenii Liuvillya integriruemykh gamiltonovykh sistem”, Matem. sb., 212:8 (2021), 89–150 | DOI | MR | Zbl

[14] Vedyushkina V. V., Kibkalo V. A., “Realizatsiya bilyardami chislovogo invarianta rassloeniya Zeiferta integriruemykh sistem”, Vestn. Mosk. un-ta. Matem., mekh., 2020, no. 4, 22–28 | MR | Zbl

[15] Vedyushkina V. V., “Lokalnoe modelirovanie sloenii Liuvillya bilyardami: realizatsiya rebernykh invariantov”, Vestn. Mosk. Univ. Matem. Mekhan., no. 2, 60–64 | MR | Zbl

[16] Vedyushkina V. V., Kibkalo V. A., Fomenko A. T., “Topologicheskoe modelirovanie integriruemykh sistem billiardami: realizatsiya chislovykh invariantov”, Dokl. RAN. Matem., Mekhan. Protsessy upr., 493 (2020), 9–12 | DOI | MR | Zbl

[17] Yakobi K., Lektsii po dinamike, ONTI, M.–L., 1936

[18] Glutsyuk A. A., “On Two-Dimensional Polynomially Integrable Billiards on Surfaces of Constant Curvature”, Dokl. Math., 98:1 (2018), 382–385 | DOI | MR | Zbl

[19] Bialy M., Mironov A. E., “Algebraic non-integrability of magnetic billiards”, J. Phys. A, 49:45 (2016), 455101 | DOI | MR | Zbl

[20] Glutsyuk A. A., “On commuting billiards in higher-dimensional spaces of constant curvature”, Pacific J. Math., 305:2 (2020), 577–595 | DOI | MR | Zbl

[21] Vedyushkina V. V, Fomenko A. T., Kharcheva I. S., “Modeling nondegenerate bifurcations of closures of solutions for integrable systems with two degrees of freedom by integrable topological billiards”, Dokl. Math., 97:2 (2018), 174–176 | DOI | MR | Zbl

[22] Dragović V., Radnović M., “Bifurcations of Liouville tori in elliptical billiards”, Regul. Chaotic Dyn., 14:4-5 (2009), 479–494 | DOI | MR | Zbl

[23] Fokicheva V. V., “Opisanie osobennostei sistemy “billiard v ellipse””, Vestn. Mosk. un-ta. Matem. Mekhan., 2012, no. 5, 31–34 | MR | Zbl

[24] Fokicheva V. V., “Opisanie osobennostei sistemy bilyarda v oblastyakh, ogranichennykh sofokusnymi ellipsami ili giperbolami”, Vestn. Mosk. un-ta. Matem. Mekhan., 2014, no. 4, 18–27 | MR | Zbl

[25] Dragović V., Radnović M.., “Caustics of Poncelet Polygons and Classical Extremal Polynomials”, Regul. Chaotic Dyn., 24:1 (2019), 1–35 | DOI | MR | Zbl

[26] Adabrah A. K., Dragović V., Radnović M., “Elliptical Billiards in the Minkowski Plane and Extremal Polynomials”, Rus. J. Nonlin. Dyn., 15:4 (2019), 397–407 | MR | Zbl

[27] Bolsinov A. V., Matveev S. V., Fomenko A. T., “Topologicheskaya klassifikatsiya integriruemykh gamiltonovykh sistem s dvumya stepenyami svobody. Spisok sistem maloi slozhnosti”, UMN, 45:2 (1990), 49–77 | MR

[28] Fomenko A. T., “Teoriya Morsa integriruemykh gamiltonovykh sistem”, Doklady AN SSSR, 287:5 (1986), 1071–1075 | MR | Zbl

[29] Fokicheva V. V., “Topologicheskaya klassifikatsiya billiardov v lokalno ploskikh oblastyakh, ogranichennykh dugami sofokusnykh kvadrik”, Matem. sb., 206:10 (2015), 127–176 | DOI | MR | Zbl

[30] Vedyushkina V. V., Fomenko A. T., “Integriruemye topologicheskie billiardy i ekvivalentnye dinamicheskie sistemy”, Izv. RAN. Ser. matem., 81:4 (2017), 20–67 | DOI | MR | Zbl

[31] Vedyushkina V. V., “Invarianty Fomenko-Tsishanga nevypuklykh topologicheskikh billiardov”, Matem. sb., 210:3 (2019), 17–74 | DOI | MR | Zbl

[32] Kibkalo V. A., Fomenko A. T., Kharcheva I. S., “Realizatsiya integriruemykh gamiltonovykh sistem bilyardnymi knizhkami”, Trudy Mosk. matem. obsch., 82, no. 1, 2021, 45–78 | MR | Zbl

[33] Vedyushkina V. V., Fomenko A. T., “Silovye evolyutsionnye billiardy i billiardnaya ekvivalentnost sluchaya Eilera i sluchaya Lagranzha”, Doklady RAN, 496 (2021), 5–9 | MR

[34] Fokicheva V. V., Topologicheskaya klassifikatsiya integriruemykh billiardov, Kand. Dissert., MGU, M., 2016

[35] Matveev S. V., Fomenko A. T., Algoritmicheskie i kompyuternye metody v trekhmernoi topologii, Izd-vo MGU, M., 1991, 303 pp. | MR

[36] Vedyushkina V. V., Integriruemye billiardy na kletochnykh kompleksakh i integriruemye gamiltonovy sistemy, Dokt. Dissert., MGU, M., 2020

[37] Vedyushkina V. V., “Integriruemye billiardy realizuyut toricheskie sloeniya na linzovykh prostranstvakh i 3-tore”, Matem. sb., 211:2 (2020), 46–73 | DOI | MR | Zbl