Reflection and transmission of cylindrical sound wave through an elastic plate with an inhomogeneous coating
Čebyševskij sbornik, Tome 23 (2022) no. 1, pp. 312-327.

Voir la notice de l'article provenant de la source Math-Net.Ru

In paper the problem of harmonic cylindrical sound waves reflection and transmission through a homogeneous isotropic elastic plate with a continuously inhomogeneous in thickness elastic coating is considered. It is believed that the plate is placed in an infinite ideal fluid, the laws of heterogeneity of the coating material are described by continuous functions. An analytical solution of the posed problem is obtained on the basis of the known solution of the problem about the passage of plane sound waves through plate with a continuously inhomogeneous coating and using integral representation of a cylindrical wave in the form of an expansion on flat waves. Finding the displacement field in an inhomogeneous layer is reduced to solving boundary value problem for a system of ordinary differential equations of the second order. The results of numerical calculations of frequency characteristics are presented for reflected and transmitted acoustic fields. Shown strong difference of frequency dependencies for different laws of inhomogeneity coating material.
Keywords: reflection and transmission of sound, cylindrical sound wave, homogeneous elastic plate, inhomogeneous coating.
@article{CHEB_2022_23_1_a20,
     author = {L. A. Tolokonnikov and T. S. Nguyen},
     title = {Reflection and transmission of cylindrical sound wave through an elastic plate with an inhomogeneous coating},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {312--327},
     publisher = {mathdoc},
     volume = {23},
     number = {1},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2022_23_1_a20/}
}
TY  - JOUR
AU  - L. A. Tolokonnikov
AU  - T. S. Nguyen
TI  - Reflection and transmission of cylindrical sound wave through an elastic plate with an inhomogeneous coating
JO  - Čebyševskij sbornik
PY  - 2022
SP  - 312
EP  - 327
VL  - 23
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2022_23_1_a20/
LA  - ru
ID  - CHEB_2022_23_1_a20
ER  - 
%0 Journal Article
%A L. A. Tolokonnikov
%A T. S. Nguyen
%T Reflection and transmission of cylindrical sound wave through an elastic plate with an inhomogeneous coating
%J Čebyševskij sbornik
%D 2022
%P 312-327
%V 23
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2022_23_1_a20/
%G ru
%F CHEB_2022_23_1_a20
L. A. Tolokonnikov; T. S. Nguyen. Reflection and transmission of cylindrical sound wave through an elastic plate with an inhomogeneous coating. Čebyševskij sbornik, Tome 23 (2022) no. 1, pp. 312-327. http://geodesic.mathdoc.fr/item/CHEB_2022_23_1_a20/

[1] Brekhovskikh L. M., Volny v sloistykh sredakh, Nauka, M., 1973, 344 pp.

[2] Shenderov E. A., Volnovye zadachi gidroakustiki, Sudostroenie, L., 1972, 352 pp.

[3] Larin N. V., “Prokhozhdenie zvuka cherez odnorodnyi termouprugii ploskii sloi”, Izvestiya Tulskogo gos. un-ta. Estestvennye nauki, 2015, no. 3, 145–153

[4] Larin N. V., “Analiz rezonansnogo rasseyaniya zvuka termouprugoi plastinoi”, Izvestiya Tulskogo gos. un-ta. Tekhnicheskie nauki, 2017, no. 4, 109–123

[5] Lonkevich M. P., “Prokhozhdenie zvuka cherez sloi transversalno-izotropnogo materiala konechnoi tolschiny”, Akusticheskii zhurn., 17:1 (1971), 85–92

[6] Shenderov E. L., “Prokhozhdenie zvuka cherez transversalno-izotropnuyu plastinu”, Akusticheskii zhurn., 30:1 (1984), 122–129

[7] Prikhodko V. Yu., Tyutekin V. V., “Raschet koeffitsienta otrazheniya zvukovykh voln ot tverdykh sloisto-neodnorodnykh sred”, Akusticheskii zhurn., 32:2 (1986), 212–218

[8] Skobeltsyn S. A., Tolokonnikov L. A., “Prokhozhdenie zvukovykh voln cherez transversalno-izotropnyi neodnorodnyi ploskii sloi”, Akusticheskii zhurn., 36:4 (1990), 740–744

[9] Rinkevich A. B., Smirnov A. N., “Rasprostranenie uprugikh voln v neodnorodnoi transversalno-izotropnoi plastine”, Defektoskopiya, 2000, no. 8, 78–83

[10] Tolokonnikov L. A., “Otrazhenie i prelomlenie ploskoi zvukovoi volny anizotropnym neodnorodnym sloem”, Prikladnaya mekhanika i tekhnicheskaya fizika, 40:5 (1999), 179–184 | Zbl

[11] Tolokonnikov L. A., “Prokhozhdenie zvuka cherez neodnorodnyi anizotropnyi sloi, granichaschii s vyazkimi zhidkostyami”, Prikladnaya matematika i mekhanika, 62:6 (1998), 1029–1035 | MR

[12] Larin N. V., Tolokonnikov L. A., “Prokhozhdenie ploskoi zvukovoi volny cherez neodnorodnyi termouprugii sloi”, Prikladnaya matematika i mekhanika, 70:4 (2006), 650–659 | MR | Zbl

[13] Tolokonnikov L. A., Larin N. V., “Prokhozhdenie zvuka cherez termouprugii diskretno-neodnorodnyi ploskii sloi, granichaschii s teploprovodnymi zhidkostyami”, Prikladnaya mekhanika i tekhnicheskaya fizika, 58:1 (2017), 108–116 | Zbl

[14] Huang C., Nutt S., “An analytical study of sound transmission through unbounded panels of functionally graded materials”, J. of Sound and Vibration, 330:6 (2011), 1153–1165 | DOI | MR

[15] Shamaev A. S., Shumilova V. V., “Prokhozhdenie ploskoi zvukovoi volny cherez sloistyi kompozit s komponentami iz uprugogo i vyazkouprugogo materialov”, Akusticheskii zhurn., 61:1 (2015), 10–20 | DOI

[16] Larin N. V., Skobeltsyn S. A., Tolokonnikov L. A., “Opredelenie zakonov neodnorodnosti ploskogo uprugogo sloya s zadannymi zvukootrazhayuschimi svoistvami”, Akusticheskii zhurnal, 61:5 (2015), 552–558 | DOI

[17] Skobeltsyn S. A., “Opredelenie parametrov neodnorodnosti anizotropnogo uprugogo sloya po prokhozhdeniyu zvuka”, Izvestiya Tulskogo gos. un-ta. Tekhnicheskie nauki, 2016, no. 7-2, 246–257

[18] Tolokonnikov L. A., Yudachev V. V., “Otrazhenie i prelomlenie ploskoi zvukovoi volny uprugim ploskim sloem s neodnorodnym pokrytiem”, Izvestiya Tulskogo gos. un-ta. Estestvennye nauki, 2015, no. 3, 219–226

[19] Larin N. V., Skobeltsyn S. A., Tolokonnikov L. A., “Modelirovanie neodnorodnogo pokrytiya uprugoi plastiny s optimalnymi zvukootrazhayuschimi svoistvami”, Prikladnaya matematika i mekhanika, 80:4 (2016), 480–488 | Zbl

[20] Larin N. V., “Opredelenie zakonov neodnorodnosti pokrytiya termouprugoi plastiny, obespechivayuschikh naimenshee zvukootrazhenie”, Izvestiya Tulskogo gos. un-ta. Tekhnicheskie nauki, 2016, no. 11-2, 216–234

[21] Tolokonnikov L. A., Nguen T. Sh., “O vliyanii neodnorodnogo pokrytiya uprugoi plastiny na otrazhenie i prokhozhdenie zvuka”, Izvestiya Tulskogo gos. un-ta. Tekhnicheskie nauki, 2018, no. 6, 362–372

[22] Tolokonnikov L. A., Nguen T. Sh., “Prokhozhdenie zvuka cherez upruguyu plastinu s neodnorodnym pokrytiem, granichaschuyu s vyazkimi zhidkostyami”, Chebyshevckii sbornik, 20:2 (2019), 289–302 | DOI

[23] Nguen T. Sh., “Ob otrazhenii i prokhozhdenii ploskoi zvukovoi volny cherez upruguyu plastinu s neodnorodnym pokrytiem, granichaschuyu s vyazkimi zhidkostyami”, Izvestiya Tulskogo gos. un-ta. Tekhnicheskie nauki, 2021, no. 5, 404–414

[24] Skobeltsyn S. A., “Otsenka svoistv pokrytiya konechnoi uprugoi plastiny s polostyu, obespechivayuschikh zadannye parametry otrazheniya zvuka”, Izvestiya Tulskogo gos. un-ta. Tekhnicheskie nauki, 2017, no. 7, 83–92

[25] Tolokonnikov L. A., Tolokonnikov S. L., “Otrazhenie i prelomlenie ploskoi zvukovoi volny uprugoi plastinoi s neodnorodnym anizotropnym pokrytiem”, Chebyshevckii sbornik, 22:3 (2021), 423–437 | DOI | MR | Zbl

[26] Piquette J. C., “Spherical-wave scattering by a finite-thickness solid plate of infinite lateral extent, with some implications for panel measurements”, J. Acoust. Soc. Am., 83:4 (1988), 1284–1294 | DOI

[27] Shushkevich G. Ch., Kiseleva N. N., “Ekranirovanie zvukovogo polya ploskim uprugim sloem i tonkoi nezamknutoi sfericheskoi obolochkoi”, Informatika, 2014, no. 2, 36–47

[28] Novatskii V., Teoriya uprugosti, Mir, M., 1975, 872 pp.

[29] Tolokonnikov L. A., Nguen T. Sh., “Opredelenie polya smeschenii neodnorodnogo pokrytiya uprugoi plastiny pri prokhozhdenii cherez nee ploskoi zvukovoi volny”, Chebyshevckii sbornik, 21:1 (2020), 310–321 | DOI | MR

[30] Felsen L., Markuvits M., Izluchenie i rasseyanie voln, v. 2, Mir, M., 1978, 557 pp.