Modeling the inhomogeneous anisotropic coating of an elastic cylinder that provides minimal sound reflection
Čebyševskij sbornik, Tome 23 (2022) no. 1, pp. 293-311.

Voir la notice de l'article provenant de la source Math-Net.Ru

The article deals with the mathematical modeling of an inhomogeneous anisotropic coating of the elastic cylinder, providing the least reflection upon diffraction of a harmonic cylindrical sound wave. It is assumed that the elastic cylinder is homogeneous and isotropic, the coating material is radially inhomogeneous and transversely isotropic, the laws inhomogeneities of the coating material are described by continuous functions, the body is placed in a boundless ideal fluid. An analytical solution of the direct diffraction problem is obtained. The scattered acoustic field and wave fields in the cylinder and its coating are defined. Wave fields in a containing medium and a homogeneous isotropic cylinder are described by expansions in cylindrical wave functions. A boundary value problem is constructed for a system of ordinary differential equations of the second order for finding displacement fields in an inhomogeneous anisotropic layer. An analytical solution of the inverse problem of the diffraction about the determination of the inhomogeneity laws of the coating material, ensuring the minimum sound scattering in the specified frequency range at a fixed angle of observation and also at a given observation sector at a fixed frequency is obtained. The functionals expressing the average intensity of sound scattering in given frequency range and angular sector of observation are built. Minimization of the functionals are implemented with the help of the burnout simulation algorithm. The results of numerical calculations of frequency and angular dependencies of the intensity of the scatter acoustic field in the far zone at the optimal parabolic inhomogeneity laws are presented.
Keywords: diffraction, sound waves, uniform elastic cylinder, inhomogeneous anisotropic coating.
@article{CHEB_2022_23_1_a19,
     author = {L. A. Tolokonnikov and D. Yu. Efimov},
     title = {Modeling the inhomogeneous anisotropic coating of an elastic cylinder that provides minimal sound reflection},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {293--311},
     publisher = {mathdoc},
     volume = {23},
     number = {1},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2022_23_1_a19/}
}
TY  - JOUR
AU  - L. A. Tolokonnikov
AU  - D. Yu. Efimov
TI  - Modeling the inhomogeneous anisotropic coating of an elastic cylinder that provides minimal sound reflection
JO  - Čebyševskij sbornik
PY  - 2022
SP  - 293
EP  - 311
VL  - 23
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2022_23_1_a19/
LA  - ru
ID  - CHEB_2022_23_1_a19
ER  - 
%0 Journal Article
%A L. A. Tolokonnikov
%A D. Yu. Efimov
%T Modeling the inhomogeneous anisotropic coating of an elastic cylinder that provides minimal sound reflection
%J Čebyševskij sbornik
%D 2022
%P 293-311
%V 23
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2022_23_1_a19/
%G ru
%F CHEB_2022_23_1_a19
L. A. Tolokonnikov; D. Yu. Efimov. Modeling the inhomogeneous anisotropic coating of an elastic cylinder that provides minimal sound reflection. Čebyševskij sbornik, Tome 23 (2022) no. 1, pp. 293-311. http://geodesic.mathdoc.fr/item/CHEB_2022_23_1_a19/

[1] Honarvar F., Sinclair A., “Scattering of an obliquely incident plane wave from a circular clad rod”, J. Acoust. Soc. Am., 102:1 (1997), 41–48 | DOI

[2] Fathi-Haftshejani P., Honarvar F., “Nondestructive evaluation of clad rods by inversion of acoustic scattering data”, J. of Nondestructive Evaluation, 38:3 (67) (2019), 1–9 | DOI

[3] Kosarev O. I., “Difraktsiya zvuka na uprugoi tsilindricheskoi obolochke s pokrytiem”, Problemy mashinostroeniya i nadezhnosti mashin, 46:1 (2012), 34–37

[4] Hasheminejad S.M., Safari N., “Acoustic scattering from viscoelastically coated spheres and cylinders in viscous fluids”, J. of Sound and Vibration, 280:1 (2005), 101–125 | DOI

[5] Ivanov V. P., “Analiz polya difraktsii na tsilindre s perforirovannym pokrytiem”, Akusticheskii zhurn., 52:6 (2006), 791–798

[6] Bobrovnitskii Yu. I., “Nerasseivayuschee pokrytie dlya tsilindra”, Akusticheskii zhurn., 54:6 (2008), 879–889

[7] Bobrovnitskii Yu. I., Morozov K. D., Tomilina T. M., “Periodicheskaya poverkhnostnaya struktura s ekstremalnymi akusticheskimi svoistvami”, Akusticheskii zhurn., 56:2 (2010), 147–151

[8] Romanov A. G., Tolokonnikov L. A., “Rasseyanie zvukovykh voln tsilindrom s neodnorodnym uprugim pokrytiem”, Prikladnaya matematika i mekhanika, 75:5 (2011), 850–857 | MR | Zbl

[9] Tolokonnikov L. A., “Difraktsiya tsilindricheskikh zvukovykh voln na tsilindre s neodnorodnym uprugim pokrytiem”, Izvestiya Tulskogo gos. un-ta. Estestvennye nauki, 2013, no. 3, 202–208

[10] Tolokonnikov L. A., “Rasseyanie naklonno padayuschei ploskoi zvukovoi volny uprugim tsilindrom s neodnorodnym pokrytiem”, Izvestiya Tulskogo gos. un-ta. Estestvennye nauki, 2013, no. 2-2, 265–274

[11] Larin N. V., Tolokonnikov L. A., “Rasseyanie ploskoi zvukovoi volny uprugim tsilindrom s diskretno-sloistym pokrytiem”, Prikladnaya matematika i mekhanika, 79:2 (2015), 242–250 | Zbl

[12] Tolokonnikov L. A., Efimov D. Yu., “Difraktsiya tsilindricheskikh zvukovykh voln na uprugom tsilindre s radialno-neodnorodnym pokrytiem”, Chebyshevckii sbornik, 22:1 (2021), 460–472 | DOI | MR | Zbl

[13] Tolokonnikov L. A., “Difraktsiya sfericheskoi zvukovoi volny na uprugom tsilindre s neodnorodnym pokrytiem”, Chebyshevckii sbornik, 19:4 (2018), 215–226 | DOI | MR | Zbl

[14] Larin N. V., “Difraktsiya ploskoi zvukovoi volny na termouprugom tsilindre s nepreryvno-neodnorodnym pokrytiem”, Izvestiya Tulskogo gos. un-ta. Tekhnicheskie nauki, 2017, no. 6, 154–173

[15] Larin N. V., “O vliyanii nepreryvno-neodnorodnogo pokrytiya na zvukootrazhayuschie svoistva termouprugogo tsilindra”, Izvestiya Tulskogo gos. un-ta. Tekhnicheskie nauki, 2017, no. 9-1, 395–403

[16] Larin N. V., Skobeltsyn S. A., Tolokonnikov L. A., “Ob opredelenii lineinykh zakonov neodnorodnosti tsilindricheskogo uprugogo sloya, imeyuschego naimenshee otrazhenie v zadannom napravlenii pri rasseyanii zvuka”, Izvestiya Tulskogo gos. un-ta. Estestvennye nauki, 2014, no. 4, 54–62

[17] Tolokonnikov L. A., Larin N. V., Skobeltsyn S. A., “Modelirovanie neodnorodnogo pokrytiya uprugogo tsilindra s zadannymi zvukootrazhayuschimi svoistvami”, Prikladnaya mekhanika i tekhnicheskaya fizika, 2017, no. 4, 189–199 | Zbl

[18] Tolokonnikov L. A., “Opredelenie zakonov neodnorodnosti pokrytiya uprugogo tsilindra s tsilindricheskoi polostyu, obespechivayuschikh minimalnoe zvukootrazhenie”, Izvestiya Tulskogo gos. un-ta. Tekhnicheskie nauki, 2017, no. 4, 67–81

[19] Tolokonnikov L. A., “Difraktsiya ploskoi zvukovoi volny na uprugom tsilindre s neodnorodnym pokrytiem, nakhodyaschemsya vblizi ploskoi poverkhnosti”, Izvestiya Tulskogo gos. un-ta. Tekhnicheskie nauki, 2018, no. 9, 276–289

[20] Tolokonnikov L. A., Larin N. V., “O vliyanii neodnorodnogo pokrytiya uprugogo tsilindra na rasseyanie zvuka v prisutstvii ploskoi poverkhnosti”, Izvestiya Tulskogo gos. un-ta. Tekhnicheskie nauki, 2020, no. 9, 111–118

[21] Tolokonnikov L. A., Efimov D. Yu., “Difraktsiya zvukovykh voln na uprugom tsilindre s neodnorodnym pokrytiem, raspolozhennom vblizi poverkhnosti uprugogo poluprostranstva”, Prikladnaya matematika i mekhanika, 85:6 (2021), 779–791 | DOI | Zbl

[22] Tolokonnikov L. A., “Difraktsiya zvukovykh voln na uprugom tsilindre s neodnorodnym pokrytiem v ploskom volnovode s akusticheski myagkimi granitsami”, Izvestiya Tulskogo gos. un-ta. Estestvennye nauki, 2015, no. 1, 43–53

[23] Tolokonnikov L. A., “Difraktsiya zvukovykh voln na uprugom tsilindre s neodnorodnym pokrytiem v ploskom volnovode s absolyutno zhestkimi granitsami”, Izvestiya Tulskogo gos. un-ta. Estestvennye nauki, 2015, no. 2, 76–83

[24] Tolokonnikov L. A., “Rasseyanie zvukovykh voln tsilindrom s radialno-neodnorodnym uprugim pokrytiem v ploskom volnovode”, Chebyshevckii sbornik, 20:1 (2019), 270–281

[25] Tolokonnikov L. A, Larin N. V., “Rasseyanie tsilindrom s neodnorodnym pokrytiem zvukovykh voln, izluchaemykh lineinym istochnikom, v ploskom volnovode”, Matematicheskoe modelirovanie, 33:8 (2021), 97–113 | DOI | Zbl

[26] Tolokonnikov L. A., Larin N. V., “Matematicheskoe modelirovanie neodnorodnogo pokrytiya uprugogo tsilindra, nakhodyaschegosya v ploskom volnovode”, Izvestiya Tulskogo gos. un-ta. Tekhnicheskie nauki, 2018, no. 9, 315–323

[27] Tolokonnikov L. A., Belkin A. E., “Opredelenie zakonov neodnorodnosti pokrytiya tsilindra, nakhodyaschegosya v ploskom volnovode, dlya obespecheniya minimalnogo otrazheniya zvuka”, Chebyshevskii sbornik, 21:4 (2020), 354–368 | DOI | MR | Zbl

[28] Shenderov E. L., Volnovye zadachi gidroakustiki, Sudostroenie, L., 1972, 352 pp.

[29] Ivanov E. A., Difraktsiya elektromagnitnykh voln na dvukh telakh, Nauka i tekhnika, Minsk, 1968, 584 pp.

[30] Novatskii V., Teoriya uprugosti, Mir, M., 1975, 872 pp.

[31] Fedorov F. I., Teoriya uprugikh voln v kristallakh, Nauka, M., 1965, 388 pp.

[32] Lebedev N.N., Spetsialnye funktsii i ikh prilozheniya, Fizmatgiz, M., 1963, 358 pp.

[33] Lopatin A.S., “Metod otzhiga”, Stokhasticheskaya optimizatsiya v informatike, 2005, no. 1, 133–149

[34] Zavyalov Yu. S., Kvasov B. I., Miroshnichenko V. L., Metody splain-funktsii, Nauka, M., 1980, 352 pp. | MR