Dimensional analysis of powders obtained by electroerosive dispersion of heat-resistant nickel alloy ZHS6U in water
Čebyševskij sbornik, Tome 23 (2022) no. 1, pp. 197-208.

Voir la notice de l'article provenant de la source Math-Net.Ru

Currently, one of the main problems of using the ZhS6U alloy is associated with the presence of expensive components in its composition, such as Ni, Ti, Mo, Co, etc. and the need to reuse it by grinding. One of the effective, but insufficiently studied metallurgical methods of grinding metal waste is electrodispersion. To date, in the modern scientific and technical literature there is no complete information about the composition, structure and properties of the particles of the ZhS6U alloy obtained in the conditions of electroerosive metallurgy. The purpose of this work was to conduct a dimensional analysis of powder particles obtained by electroerosive dispersion of heat-resistant nickel alloy ZhS6U in water. Electrodispersion of the waste of the heat-resistant nickel alloy ZHS6U in the form of substandard "working" turbine blades of the jet engine of the aircraft was carried out in distilled water at the original installation. As a result of exposure to short-term electrical discharges, particles of heat-resistant nickel alloy ZHS6U powder of various sizes were formed in the water. The dimensional characteristics of the powder particles obtained by electroerosive dispersion of the heat-resistant nickel alloy ZHS6U in water were studied using a laser particle size analyzer "Analysette 22 NanoTec". Based on the conducted experimental studies, it was found that the powder particles obtained by electroerosive dispersion of heat-resistant nickel alloy ZHS6U in water have sizes from 0.1 to 285 microns with an average volumetric diameter of 67.1 microns. The features of the formation of the fractional composition of powder particles in the process of electroerosive metallurgy of metal waste of the ZhS6U brand are noted, namely, the presence of two extremes of particle sizes of 10 microns and 100 microns: a small fraction (0.1 $\ldots$ 25.0 microns) is formed due to condensation of the vapor phase and a large fraction (25.0 $\ldots$ 300 microns) is formed due to condensation of the liquid phase. It is noted that the displacement of the extremes of the particle sizes formed during the crystallization of the vapor and liquid phases is determined by the electrical parameters of the installation: the voltage on the electrodes, the capacity of the discharge capacitors and the pulse repetition frequency. It is shown that the powder obtained by electroerosive dispersion of heat-resistant nickel alloy ZHS6U in water contains: 5% particles with a size up to 1.69 microns; 10% particles with a size up to 3.36 microns; 25% particles with a size up to 11.71 microns; 50% particles with a size up to 50.07 microns; 75% particles with a size up to 99.02 microns; 90% of particles with a size up to 165.74 microns; 95% of particles with a size up to 210.72 microns; 99% of particles with a size up to 281.09 microns inclusive. In this case, the specific surface area of the powder is 7994 cm$^2$/cm$^3$.
Keywords: waste of heat-resistant nickel alloy ZhS6U, electroerosive dispersion, powder particles, dimensional characteristics.
@article{CHEB_2022_23_1_a14,
     author = {E. V. Ageev and A. E. Gvozdev and E. A. Protopopov and V. O. Podanov and A. E. Ageeva},
     title = {Dimensional analysis of powders obtained by electroerosive dispersion of heat-resistant nickel alloy {ZHS6U} in water},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {197--208},
     publisher = {mathdoc},
     volume = {23},
     number = {1},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2022_23_1_a14/}
}
TY  - JOUR
AU  - E. V. Ageev
AU  - A. E. Gvozdev
AU  - E. A. Protopopov
AU  - V. O. Podanov
AU  - A. E. Ageeva
TI  - Dimensional analysis of powders obtained by electroerosive dispersion of heat-resistant nickel alloy ZHS6U in water
JO  - Čebyševskij sbornik
PY  - 2022
SP  - 197
EP  - 208
VL  - 23
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2022_23_1_a14/
LA  - ru
ID  - CHEB_2022_23_1_a14
ER  - 
%0 Journal Article
%A E. V. Ageev
%A A. E. Gvozdev
%A E. A. Protopopov
%A V. O. Podanov
%A A. E. Ageeva
%T Dimensional analysis of powders obtained by electroerosive dispersion of heat-resistant nickel alloy ZHS6U in water
%J Čebyševskij sbornik
%D 2022
%P 197-208
%V 23
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2022_23_1_a14/
%G ru
%F CHEB_2022_23_1_a14
E. V. Ageev; A. E. Gvozdev; E. A. Protopopov; V. O. Podanov; A. E. Ageeva. Dimensional analysis of powders obtained by electroerosive dispersion of heat-resistant nickel alloy ZHS6U in water. Čebyševskij sbornik, Tome 23 (2022) no. 1, pp. 197-208. http://geodesic.mathdoc.fr/item/CHEB_2022_23_1_a14/

[1] Novikova O.V., Kochetkov V.A., Vinogradov A.I., Zhukov A.A., Tikhonov A.A., Marinin S.F., “Primenenie gazoizostaticheskogo pressovaniya dlya povysheniya ekspluatatsionnoi nadezhnosti lopatok turbiny iz zharoprochnogo splava tipa ZhS6U”, Zagotovitelnye proizvodstva v mashinostroenii, 2007, no. 8, 54–56

[2] Kurikhina T.V., “Kinetika obrazovaniya intermetallida na osnove Ni3Al v zharoprochnom nikelevom splave ZhS6U”, Tekhnologiya mashinostroeniya, 2017, no. 1, 5–8

[3] Dobrynin D.A., Alekseeva M.S., Afanasev-Khodykin A.N., “Remont detalei goryachego trakta gazoturbinnogo dvigatelya iz zharoprochnogo nikelevogo splava marki ZhS6U”, Trudy VIAM, 2021, no. 5 (99), 3–13

[4] Mikhailenko S.V., Nastolnaya V.V., Borodikhin A.S., Golub R.S., “Issledovanie proizvoditelnosti obrabotki zharoprochnoi stali ZhS6U keramicheskimi plastinami”, Aktualnye nauchnye issledovaniya v sovremennom mire, 2020, no. 12-1(68), 2–1

[5] Bykov Yu.G., Logunov A.V., Razumovskii I.M., Frolov V.S., “Izmenenie plotnosti splava ZhS6U v protsesse ekspluatatsii”, Metallovedenie i termicheskaya obrabotka metallov, 2007, no. 7 (625), 29–32

[6] Ospennikova O.G., Orlov M.R., “Povyshenie svoistv zharoprochnogo splava ZhS6U-VI putem goryachego izostaticheskogo pressovaniya i posleduyuschei termicheskoi obrabotki”, Materialovedenie, 2007, no. 9, 32–37

[7] Eremin E.N., Filippov Yu.O., Davletkildeev N.A., Minnekhanov G.N., “Issledovanie struktury splava ZhS6U metodom atomno-silovoi mikroskopii”, Omskii nauchnyi vestnik, 2011, no. 1 (97), 24–29

[8] Eremin E.N., Filippov Yu.O., Matalasova A.E., “Issledovanie karbidnykh faz v splave ZhS6U”, Omskii nauchnyi vestnik, 2014, no. 3 (133), 59–63

[9] Eremin E.N., Filippov Yu.O., Minnekhanov G.N., Lopaev B.E., “Issledovanie fazovykh prevraschenii v splave ZhS6U metodami termicheskogo analiza”, Omskii nauchnyi vestnik, 2013, no. 1 (117), 63–68

[10] Ravilov R.G., Petrova M.A., Drevnyak V.V., Saadatibai M., “Metodika otsenki dolgovechnosti pokrytiya na lopatkakh turbiny iz splavov ZhS6U I ZhS26VSNK”, Nauchnyi vestnik Moskovskogo gosudarstvennogo tekhnicheskogo universiteta grazhdanskoi aviatsii, 2015, no. 222 (12), 201–206

[11] Ageeva E.V., Khor'yakova N.M., Ageev E.V., “Morphology of copper powder produced by electrospark dispersion from waste”, Russian Engineering Research, 34:11 (2014), 694–696 | DOI

[12] Ageeva E.V., Khor'yakova N.M., Ageev E.V., “Morphology and composition of copper electrospark powder suitable for sintering”, Russian Engineering Research, 35:1 (2015), 33–35 | DOI | MR

[13] Ageeva E.V. Ageev E.V., Latypov R.A., “Investigation into the properties of electroerosive powders and hard alloy fabricated from them by isostatic pressing and sintering”, Russian Journal of Non-Ferrous Metals, 56:1 (2015), 52–62 | DOI | MR

[14] Ageeva E.V., Ageev E.V., Karpenko V.Y., “Nanopowder produced from high-speed steel waste by electrospark dispersion in water”, Russian Engineering Research, 35:3 (2015), 189–190 | DOI

[15] Latypov R.A., Ageeva E.V., Kruglyakov O.V., Latypova G.R., “Electroerosion micro- and nanopowders for the production of hard alloys”, Russian Metallurgy (Metally), 2016:6 (2016), 547–549 | DOI

[16] Latypov R.A., Ageev E.V., Latypova G.R., Altukhov A.Y., Ageeva E.V., “Elemental Composition of the Powder Particles Produced by Electric Discharge Dispersion of the Wastes of a VK8 Hard Alloy”, Russian Metallurgy (Metally), 2017:12 (2017), 1083–1085 | DOI

[17] Latypov R.A., Ageev E.V., Altukhov A.Y., Ageeva E.V., “Manufacture of Cobalt-Chromium Powders by the Electric Discharge Dispersion of Wastes and Their Investigation”, Russian Metallurgy (Metally), 2018:12 (2018), 1177–1180 | DOI

[18] Latypov R.A., Ageev E.V., Altukhov A.Y., Ageeva E.V., “Effect of Temperature on the Porosity of the Additive Products Made of the Dispersed Wastes of Cobalt-Chromium Alloys”, Russian Metallurgy (Metally), 2019:12 (2019), 1300–1303 | DOI

[19] Ageev E.V., Altukhov A.Yu., Ageeva E.V., Pykhtin A.I., “Structure and mechanical properties of powders obtained by electrodisperging cobalt-chromium alloy”, Journal of Applied Engineering Science, 19:1 (2021), 230–236 | DOI

[20] Ageeva E.V., Ageev E.V., Latypov R.A., “Properties of the VNZH Pseudoalloy Sintered from Spark Erosion Powders Fabricated in Distilled Water”, Russian Metallurgy (Metally), 6 (2021), 119–123

[21] Ageeva E.V., Ageev E.V., Kuzovleva O.V., Gvozdev A.E., “Mathematical optimization of the process of electrodispergation of the waste of the alloy of the residence permit”, Chebyshevskii Sbornik, 22:2 (2021), 389–401 | DOI

[22] Ageeva E.V., Ageev E.V., Kuzovleva O.V., Gvozdev A.E., “Development of scientific and technological foundations for a new environmentally friendly and waste-free process for grinding conductive waste into micro- and nanofractions powders”, Chebyshevskii Sbornik, 21:4 (2021), 314–326 | DOI | MR

[23] Ageev E.V., Ageeva E.V., Khoryakova N.M., “X-Ray methods for studying the surface of powder obtained by electroerosion dispersion of the waste of W-Ni-Fe 95 pseudoalloy in kerosene”, Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques, 15:4 (2021), 723–727 | DOI

[24] Ageev E.V., Ageeva E.V., “Wear Resistance of Hardened Components Produced from Electrospark Cobalt-Chromium Powder by Additive Manufacturing”, Russian Engineering Research, 41:8 (2021), 731–733 | DOI

[25] Ageev E.V., Gvozdev A.E., Bystrorezhuschie stali: sverkhplastichnost i retsikling, monografiya, Izd-vo ZAO «Universitetskaya kniga», Kursk, 2021, 386 pp.