Sharp Bernstein--Nikolskii inequalities for polynomials and entire functions of exponential type
Čebyševskij sbornik, Tome 22 (2021) no. 5, pp. 58-110.

Voir la notice de l'article provenant de la source Math-Net.Ru

The classical Bernstein–Nikolskii inequalities of the form $\|Df\|_{q}\le \mathcal {C}_{pq}\|f\|_{p}$ for $f\in Y$, give estimates for the $pq$-norms of the differential operators $D$ on classes $Y$ of polynomials and entire functions of exponential type. These inequalities play an important role in harmonic analysis, approximation theory and find applications in number theory and metric geometry. Both order inequalities and inequalities with sharp constants are studied. The last case is especially interesting because the extremal functions depend on the geometry of the manifold and this fact helps in solving geometric problems. Historically, Bernstein's inequalities are referred to the case $p=q$, and Nikolskii's inequalities to the estimate of the identity operator for $p$. For the first time, an estimate for the derivative of a trigonometric polynomial for $p=\infty$ was given by S.N. Bernstein (1912), although earlier A.A. Markov (1889) gave its algebraic version. Bernstein's inequality was refined by E. Landau, M. Riess, and A. Sigmund (1933) proved it for all $p\ge 1$. For $p1$, the Bernstein order inequality was found by V.I. Ivanov (1975), E.A. Storozhenko, V.G. Krotov and P. Oswald (1975), and the sharp inequality by V.V. Arestov (1981). For entire functions of exponential type, the sharp Bernstein inequality was proved by N.I. Akhiezer, B.Ya. Levin ($p\ge 1$, 1957), Q.I. Rahman and G. Schmeisser ($p1$, 1990). The first one-dimensional Nikolskii inequalities for $q=\infty$ were established by D. Jackson (1933) for trigonometric polynomials and J. Korevaar (1949) for entire functions of exponential type. In all generality for $q\le \infty$ and $d$-dimensional space, this was done by S.M. Nikolskii (1951). The estimates of Nikolskii constants were refined by I.I. Ibragimov (1959), D. Amir and Z. Ziegler (1976), R.J. Nessel and G. Wilmes (1978), and many others. Bernstein–Nikolskii order inequalities for different intervals were studied by N.K. Bari (1954). Variants of inequalities for general multiplier differential operators and weighted manifolds can be found in the works of P.I. Lizorkin (1965), A.I. Kamzolov (1984), A.G. Babenko (1992), A.I. Kozko (1998), K.V. Runovsky and H.-J. Schmeisser (2001), F. Dai and Y. Xu (2013), V.V. Arestov and P.Yu. Glazyrina (2014) and other authors. For a long time, the theory of Bernstein–Nikolskii inequalities for polynomials and entire functions of exponential type developed in parallel until E. Levin and D. Lubinsky (2015) established that for all $p>0$ the Nikolskii constant for functions is the limit of trigonometric constants. For the Bernstein–Nikolskii constants, this fact was proved by M.I. Ganzburg and S.Yu. Tikhonov (2017) and refined by the author together with I.A. Martyanov (2018, 2019). Multidimensional results of the Levin–Lyubinsky type were proved by the author together with F. Dai and S.Yu. Tikhonov (the sphere, 2020), M.I. Ganzburg (the torus, 2019 and the cube, 2021). Until now, the sharp Nikolskii constants are known only for $(p,q)=(2,\infty)$. The case of the Nikolskii constant for $p=1$ is intriguing. Advancement in this area was obtained by Ya.L. Geronimus (1938), S.B. Stechkin (1961), L.V. Taikov (1965), L. Hörmander and B. Bernhardsson (1993), N.N. Andreev, S.V. Konyagin and A.Yu. Popov (1996), author (2005), author and I.A. Martyanov (2018), I.E. Simonov and P.Yu. Glazyrina (2015). E. Carneiro, M.B. Milinovich and K. Soundararajan (2019) pointed out applications in the theory of the Riemann zeta function. V.V. Arestov, M.V. Deikalova et al (2016, 2018) characterized extremal polynomials for general weighted Nikolskii constants using duality. Here, S.N. Bernshtein, L.V. Taikov (1965, 1993) and others stood at the origins. A new direction is the proof of Nikolskii's sharp inequalities on classes of functions with constraints. It reveals a connection with the extremal problems of harmonic analysis of Turan, Delsarte, the uncertainty principle by J. Bourgain, L. Clozel and J.-P. Kahane (2010) and others. For example, the author and coauthors (2020) showed that the sharp Nikolskii constant for nonnegative spherical polynomials gives an estimate for spherical designs by P. Delsarte, J.M. Goethals and J.J. Seidel (1977). Variants of problems for functions lead to famous estimates for the density of spherical packing, and order results are closely related to Fourier inequalities. These results are presented in the framework of the general theory of Bernstein–Nikolskii inequalities, applications in approximation theory, number theory, metric geometry are presented, open problems are proposed.
Keywords: Bernstein inequality, Nikolskii inequality, sharp constant, polynomial, entire function of exponential type.
@article{CHEB_2021_22_5_a5,
     author = {D. V. Gorbachev},
     title = {Sharp {Bernstein--Nikolskii} inequalities for polynomials and entire functions of exponential type},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {58--110},
     publisher = {mathdoc},
     volume = {22},
     number = {5},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2021_22_5_a5/}
}
TY  - JOUR
AU  - D. V. Gorbachev
TI  - Sharp Bernstein--Nikolskii inequalities for polynomials and entire functions of exponential type
JO  - Čebyševskij sbornik
PY  - 2021
SP  - 58
EP  - 110
VL  - 22
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2021_22_5_a5/
LA  - ru
ID  - CHEB_2021_22_5_a5
ER  - 
%0 Journal Article
%A D. V. Gorbachev
%T Sharp Bernstein--Nikolskii inequalities for polynomials and entire functions of exponential type
%J Čebyševskij sbornik
%D 2021
%P 58-110
%V 22
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2021_22_5_a5/
%G ru
%F CHEB_2021_22_5_a5
D. V. Gorbachev. Sharp Bernstein--Nikolskii inequalities for polynomials and entire functions of exponential type. Čebyševskij sbornik, Tome 22 (2021) no. 5, pp. 58-110. http://geodesic.mathdoc.fr/item/CHEB_2021_22_5_a5/

[1] Akhiezer N.I., Lektsii po teorii approksimatsii, Nauka, M., 1965 | MR

[2] Amir D., Ziegler Z., “Polynomials of extremal $L_{p}$-norm on the $L_{\infty}$-unit sphere”, J. Approx. Theory, 18 (1976), 86–98 | DOI | MR | Zbl

[3] Andreev N.N., Konyagin S.V., Popov A.Yu., “Ekstremalnye zadachi dlya funktsii s malym nositelem”, Matem. zametki, 60:3 (1996), 323–332 | DOI | MR | Zbl

[4] Andreev N.N., Konyagin S.V., Popov A.Yu., “Pismo v redaktsiyu”, Matem. zametki, 68:3 (2000), 479 | DOI | MR | Zbl

[5] Andreev N.N., Yudin V.A., “Naimenee uklonyayuschiesya ot nulya mnogochleny i kubaturnye formuly chebyshevskogo tipa”, Trudy MIAN, 232, 2001, 45–57 | Zbl

[6] Arestov V.V., “Ob integralnykh neravenstvakh dlya trigonometricheskikh polinomov i ikh proizvodnykh”, Izv. AN SSSR. Ser. matem., 45:1 (1981), 3–22

[7] Arestov V., Babenko A., Deikalova M., Horváth $\acute{A}$., “Nikol'skii inequality between the uniform norm and integral norm with Bessel weight for entire functions of exponential type on the half-line”, Anal. Math., 44:1 (2018), 21–42 | DOI | MR | Zbl

[8] Arestov V.V., Berdysheva E.E., “The Turán problem for a class of polytopes”, East J. Approx., 8:3 (2002), 381–388 | MR | Zbl

[9] Arestov V.V., Glazyrina P.Yu., “Neravenstvo Bernshteina–Sege dlya drobnykh proizvodnykh trigonometricheskikh polinomov”, Tr. IMM UrO RAN, 20, no. 1, 2014, 17–31

[10] Arestov V.V., Deikalova M.V., “Neravenstvo Nikolskogo dlya algebraicheskikh mnogochlenov na mnogomernoi evklidovoi sfere”, Tr. IMM UrO RAN, 19, no. 2, 2013, 34–47

[11] Arestov V., Deikalova M., “Nikol'skii inequality between the uniform norm and $L_{q}$-norm with ultraspherical weight of algebraic polynomials on an interval”, Comput. Methods Funct. Theory, 15:4 (2015), 689–708 | DOI | MR | Zbl

[12] Arestov V., Deikalova M., “Nikol'skii inequality between the uniform norm and $L_{q}$-norm with Jacobi weight of algebraic polynomials on an interval”, Anal. Math., 42:2 (2016), 91–120 | DOI | MR | Zbl

[13] Ash J.M., Ganzburg M., “An extremal problem for trigonometric polynomials”, Proc. Amer. Math. Soc., 127:1 (1999), 211–216 | DOI | MR | Zbl

[14] Attila M., Nevai P.G., “Bernstein's inequality in $L^{p}$ for $0

1$ and $(C,1)$ bounds for orthogonal polynomials”, Ann. of Math., 111:1 (1980), 145–54 | DOI | MR

[15] Babenko A.G., “Neravenstva slabogo tipa dlya trigonometricheskikh polinomov”, Sbornik nauchnykh trudov, Tr. IMM UrO RAN, 2, 1992, 34–41 | Zbl

[16] Bari N.K., “Obobschenie neravenstv S.N. Bernshteina i A.A. Markova”, Izv. AN SSSR. Ser. matem., 18:2 (1954), 159–176 | Zbl

[17] Belinsky E., Dai F., Ditzian Z., “Multivariate approximating averages”, J. Approx. Theory, 125:1 (2003), 85–105 | DOI | MR | Zbl

[18] Benyamini Y., Kroó A., Pinkus A., “$L^{1}$-approximation and finding solutions with small support”, Constr. Approx., 36:3 (2012), 399–431 | DOI | MR | Zbl

[19] Bianchi G., Kelly M., “A Fourier analytic proof of the Blaschke–Santalo inequality”, Proc. Amer. Math. Soc., 143:11 (2015), 4901–4912 | DOI | MR | Zbl

[20] Boas R.P., Entire functions, Academic Press, N.Y., 1954 | MR | Zbl

[21] Bogatyrev A.B., “Ob effektivnom vychislenii mnogochlenov Chebysheva dlya neskolkikh otrezkov”, Matem. sb., 190:11 (1999), 15–50 | DOI | MR | Zbl

[22] Bondarenko A., Radchenko D., Viazovska M., “Well-separated spherical designs”, Constr. Approx., 41:1 (2015), 93–112 | DOI | MR | Zbl

[23] Bourgain J., Clozel L., Kahane J.-P., “Principe d'Heisenberg et fonctions positives”, Ann. Inst. Fourier (Grenoble), 60:4 (2010), 1215–1232 | DOI | MR | Zbl

[24] Brown L.G., Lucier B.J., “Best approximations in $L^{1}$ are near best in $L^{p}$, $p1$”, Proc. Amer. Math. Soc., 120:1 (1994), 97–100 | MR | Zbl

[25] Carneiro E., Milinovich M.B., Soundararajan K., “Fourier optimization and prime gaps”, Comment. Math. Helv., 94 (2019), 533–568 | DOI | MR | Zbl

[26] Cohn H., Elkies N., “New upper bounds on sphere packings. I”, Ann. of Math. (2), 157:2 (2003), 689–714 | DOI | MR | Zbl

[27] Cohn H., Goncalves F., “An optimal uncertainty principle in twelve dimensions via modular forms”, Invent. math., 217 (2019), 799–831 | DOI | MR | Zbl

[28] Cohn H., Kumar A., Miller S.D., Radchenko D., Viazovska M., “The sphere packing problem in dimension $24$”, Ann. of Math., 185:3 (2017), 1017–1033 | DOI | MR | Zbl

[29] Konvei Dzh., Sloen N., Upakovki sharov, reshetki i gruppy, v. I, Mir, M., 1990 | MR

[30] Dai F., “Multivariate polynomial inequalities with respect to doubling weights and $A_{\infty }$ weights”, J. Funct. Anal., 235:1 (2006), 137–170 | DOI | MR | Zbl

[31] Dai F., Feng H., Tikhonov S., “Reverse Hölder's inequality for spherical harmonics”, Proc. Amer. Math. Soc., 144:3 (2016), 1041–1051 | DOI | MR | Zbl

[32] Dai F., Gorbachev D., Tikhonov S., “Nikolskii inequality for lacunary spherical polynomials”, Proc. Amer. Math. Soc., 148:3 (2020), 1169–1174 | DOI | MR | Zbl

[33] Dai F., Gorbachev D., Tikhonov S., “Nikolskii constants for polynomials on the unit sphere”, J. d'Anal. Math., 140:1 (2020), 161–185 | DOI | MR | Zbl

[34] Dai F., Gorbachev D., Tikhonov S., “Estimates of the asymptotic Nikolskii constants for spherical polynomials”, Journal of Complexity, 65 (2021), 101553 | DOI | MR | Zbl

[35] Dai F., Tikhonov S., “Weighted fractional Bernstein's inequalities and their applications”, J. d'Anal. Math., 129 (2016), 33–68 | DOI | MR | Zbl

[36] Dai F., Xu Yu., Approximation theory and harmonic analysis on spheres and balls, Springer, N.Y., 2013 | MR | Zbl

[37] Deikalova M.V., “O tochnom neravenstve Dzheksona–Nikolskogo dlya algebraicheskikh mnogochlenov na mnogomernoi evklidovoi sfere”, Tr. IMM UrO RAN, 15, no. 1, 2009, 122–134

[38] Erdelyi T., “Arestov's theorems on Bernstein's inequality”, J. Approx. Theory, 250 (2020), 105323 | DOI | MR | Zbl

[39] Goncalves F., Oliveira e Silva D., Ramos J.P.G., “On regularity and mass concentration phenomena for the sign uncertainty principle”, J. Geom. Anal., 31 (2021), 6080–6101 | DOI | MR | Zbl

[40] Ganzburg M.I., “Sharp constants of approximation theory. II. Invariance theorems and certain multivariate inequalities of different metrics”, Constr. Approx., 50 (2019), 543–577 | DOI | MR | Zbl

[41] Ganzburg M.I., “Sharp constants of approximation theory. I. Multivariate Bernstein–Nikolskii type inequalities”, J. Fourier Anal. Appl., 26:11 (2020) | MR | Zbl

[42] Ganzburg M.I., “Sharp constants of approximation theory. III. Certain polynomial inequalities of different metrics on convex sets”, J. Approx. Theory, 252 (2020), 105351 | DOI | MR | Zbl

[43] Ganzburg M.I., “Sharp constants of approximation theory. V. An asymptotic equality related to polynomials with given Newton polyhedra”, J. Math. Anal. Appl., 499:1 (2021), 125026 | DOI | MR | Zbl

[44] Ganzburg M.I., “Asymptotics of sharp constants in Markov–Bernstein–Nikolskii type inequalities with exponential weights”, J. Approx. Theory, 265 (2021), 105550 | DOI | MR | Zbl

[45] Ganzburg M., Sharp constants of approximation theory. VI. Multivariate inequalities of different metrics for polynomials and entire functions, 2021, arXiv: 2103.09368 | MR

[46] Ganzburg M., Tikhonov S., “On sharp constants in Bernstein–Nikolskii inequalities”, Constr. Approx., 45:3 (2017), 449–466 | DOI | MR | Zbl

[47] Genchev T.G., “Entire functions of exponential type with polynomial growth on $\mathbb{R}_{x}^{n}$”, J. Math. Anal. Appl., 60 (1977), 103–119 | DOI | MR | Zbl

[48] Geronimus Ya.L., “Ob odnoi ekstremalnoi zadache Chebysheva”, Izv. AN SSSR. Ser. matem., 2:4 (1938), 445–456

[49] Gorbachev D.V., “Ekstremalnaya zadacha dlya tselykh funktsii eksponentsialnogo sfericheskogo tipa, svyazannaya s otsenkoi Levenshteina plotnosti upakovki $\mathbb{R}^{n}$ sharami”, Izv. TulGU. Ser. Matematika, 6:1 (2000), 71–78 | MR

[50] Gorbachev D.V., “Ekstremalnaya zadacha dlya periodicheskikh funktsii s nositelem v share”, Matem. zametki, 69:3 (2001), 346–352 | DOI | MR | Zbl

[51] Gorbachev D.V., “Integralnaya zadacha Konyagina i $(C,L)$-konstanty Nikolskogo”, Tr. IMM UrO RAN, 11, no. 2, 2005, 72–91 | Zbl

[52] Gorbachev D.V., Dobrovolskii N.N., “Konstanty Nikolskogo v prostranstvakh $L^{p}(\mathbb{R},|x|^{2\alpha +1}~dx)$”, Chebyshevskii sbornik, 19:2 (2018), 67–79 | DOI | MR | Zbl

[53] Gorbachev D.V., Ivanov V.I., “Kvadraturnye formuly Gaussa i Markova po nulyam sobstvennykh funktsii zadachi Shturma–Liuvillya, tochnye dlya tselykh funktsii eksponentsialnogo tipa”, Mat. sb., 206:8 (2015), 63–98 | DOI | Zbl

[54] Gorbachev D.V., Ivanov V.I., “Turán's and Fejér's extremal problems for Jacobi transform”, Anal. Math., 44:4 (2018), 419–432 | DOI | MR | Zbl

[55] Gorbachev D.V., Ivanov V.I., “Ekstremalnye zadachi Turana, Feiera, Bomana dlya mnogomernogo preobrazovaniya Fure po sobstvennym funktsiyam zadachi Shturma–Liuvillya”, Matem. sb., 210:6 (2019), 56–81 | DOI | MR | Zbl

[56] Gorbachev D.V., Ivanov V.I., “Konstanty Nikolskogo–Bernshteina dlya tselykh funktsii eksponentsialnogo sfericheskogo tipa v vesovykh prostranstvakh”, Tr. IMM UrO RAN, 25, no. 2, 2019, 75–87

[57] Gorbachev D.V., Ivanov V.I., “Fractional smoothness in $L^{p}$ with Dunkl weight and its applications”, Math. Notes, 106:4 (2019), 537–561 | DOI | MR | Zbl

[58] Gorbachev D.V., Ivanov V.I., Tikhonov S.Yu., “Sharp approximation theorems and Fourier inequalities in the Dunkl setting”, J. Approx. Theory, 258 (2020), 105462 | DOI | MR | Zbl

[59] Gorbachev D.V., Ivanov V.I., Tikhonov S.Yu., “Positive $L^{p}$-bounded Dunkl-type generalized translation operator and its applications”, Constr. Approx., 49:3 (2019), 555–605 | DOI | MR | Zbl

[60] Gorbachev D., Ivanov V., Tikhonov S., “Uncertainty principles for eventually constant sign bandlimited functions”, SIAM J. Math. Anal., 52:5 (2020), 4751–4782 | DOI | MR | Zbl

[61] Gorbachev D.V., Martyanov I.A., “O vzaimosvyazi konstant Nikolskogo dlya trigonometricheskikh polinomov i tselykh funktsii eksponentsialnogo tipa”, Chebyshevskii sbornik, 19:2 (2018), 80–89 | DOI | MR | Zbl

[62] Gorbachev D.V., Martyanov I.A., “Vzaimosvyaz mezhdu konstantami Nikolskogo–Bernshteina dlya trigonometricheskikh polinomov i tselykh funktsii eksponentsialnogo tipa”, Chebyshevskii sbornik, 20:3 (2019), 143–153 | DOI | MR | Zbl

[63] Gorbachev D.V., Martyanov I.A., “Pismo v redaktsiyu”, Chebyshevskii sbornik, 21:3 (2020), 336–338 | DOI | MR | Zbl

[64] Gorbachev D.V., Martyanov I.A., “Konstanty Markova–Bernshteina — Nikolskogo dlya polinomov v prostranstve $L^{p}$ s vesom Gegenbauera”, Chebyshevskii sbornik, 21:4 (2020), 29–44 | DOI | MR | Zbl

[65] Gorbachev D.V., Martyanov I.A., “Novye granitsy algebraicheskoi konstanty Nikolskogo”, Chebyshevskii sbornik, 21:4 (2020), 45–55 | DOI | MR | Zbl

[66] Gorbachev D.V., Martyanov I.A., “Granitsy polinomialnykh konstant Nikolskogo v $L^{p}$ s vesom Gegenbauera”, Tr. IMM UrO RAN, 26, no. 4, 2020, 126–137

[67] Gorbachev D.V., Tikhonov S.Y., “Wiener's problem for positive definite functions”, Math. Zeit., 289:3–4 (2018), 859–874 | DOI | MR | Zbl

[68] Gorbachev D., Tikhonov S., “Doubling condition at the origin for non-negative positive definite functions”, Proc. Amer. Math. Soc., 147 (2019), 609–618 | DOI | MR | Zbl

[69] Delsarte P., Goethals J.M., Seidel J.J., “Spherical codes and design”, Geom. Dedicata, 6:3 (1977), 363–388 | DOI | MR | Zbl

[70] Khelgason S., Differentsialnaya geometriya i simmetricheskie prostranstva, Mir, M., 1964

[71] Hörmander L., Bernhardsson B., “An extension of Bohr's inequality”, Boundary value problems for partial differential equations and applications, RMA Res. Notes Appl. Math., 29, 1993, 179–194 | MR | Zbl

[72] Ibragimov I.I., “Ekstremalnye zadachi v klasse trigonometricheskikh polinomov”, Dokl. AN SSSR, 121:3 (1958), 415–417 | Zbl

[73] Ibragimov I.I., Dzhafarov A.S., “O nekotorykh neravenstvakh dlya tseloi funktsii konechnoi stepeni i ee proizvodnykh”, Dokl. AN SSSR, 138:4 (1961), 755–758 | Zbl

[74] Ivanov V.A., “O neravenstvakh Bernshteina — Nikolskogo i Favara na kompaktnykh odnorodnykh prostranstvakh ranga $1$”, UMN, 38:3 (231) (1983), 179–180 | MR | Zbl

[75] Ivanov V.A., “Tochnye rezultaty v zadache o neravenstve Bernshteina — Nikolskogo na kompaktnykh simmetricheskikh rimanovykh prostranstvakh ranga 1”, Tr. MIAN SSSR, 194, 1992, 111–119 | Zbl

[76] Ivanov V.I., “Nekotorye neravenstva dlya trigonometricheskikh polinomov i ikh proizvodnykh v raznykh metrikakh”, Matem. zametki, 18:4 (1975), 489–498 | MR | Zbl

[77] Jackson D., “Certain problems of closest approximation”, Bull. Am. Math. Soc., 39 (1933), 889–906 | DOI | MR | Zbl

[78] Kamzolov A.I., “Ob interpolyatsionnoi formule Rissa i neravenstve Bernshteina dlya funktsii na odnorodnykh prostranstvakh”, Matem. zametki, 15:6 (1974), 967–978 | Zbl

[79] Kamzolov A.I., “Neravenstvo Bernshteina dlya drobnykh proizvodnykh polinomov po sfericheskim garmonikam”, UMN, 39:2 (236) (1984), 159–160 | MR | Zbl

[80] Kamzolov A.I., “O priblizhenii funktsii na sfere $S^{n}$”, Serdika, 84:1 (1984), 3–10 | MR

[81] Kolountzakis M.N., Révész Sz.Gy, “On a problem of Turán about positive definite functions”, Proc. Amer. Math. Soc., 131 (2003), 3423–3430 | DOI | MR | Zbl

[82] Konyagin S.V., “Otsenki proizvodnykh ot mnogochlenov”, Dokl. AN SSSR, 243:5 (1978), 1116–1118 | MR | Zbl

[83] Koornwinder T.H., “Jacobi functions and analysis on noncompact semisimple Lie groups”, Special functions: Group theoretical aspects and applications, eds. R.A. Askey, T.H. Koornwinder, W. Schempp, Reidel, Dordrecht, 1984, 1–85 | MR | Zbl

[84] Korevaar J., “An inequality for entire functions of exponential type”, Nieuw Arch. Wiskunde (2), 23 (1949), 55–62 | MR | Zbl

[85] Korneichuk N.P., Ekstremalnye zadachi teorii priblizhenii, Nauka, M., 1976 | MR

[86] Lebedev V.I., “Ekstremalnye mnogochleny i metody optimizatsii vychislitelnykh algoritmov”, Matem. sb., 195:10 (2004), 21–66 | DOI | Zbl

[87] Levenshtein V.I., “Universal bounds for codes and designs”, Handbook of coding theory, eds. V.S. Pless and W.C. Huffman, Elsevier, Amsterdam, 1998 | MR | Zbl

[88] Levin B.Ya., Raspredelenie kornei tselykh funktsii, Gostekhizdat, M., 1956

[89] Levin B.Ya., Lectures on entire functions, English revised edition, Amer. Math. Soc., Providence, RI, 1996 | MR | Zbl

[90] Levitan B.M., Theory of generalized shift operators, Nauka, M., 1973 (In Russ.) | MR

[91] Levitan B.M., Teoriya operatorov obobschennogo sdviga, Nauka, M., 1973; Littmann F., Spanier M., “Extremal signatures”, Constr. Approx., 47 (2018), 339–356 | DOI | MR | Zbl

[92] Logunov A., “Nodal sets of Laplace eigenfunctions: Polynomial upper estimates of the Hausdorff measure”, Ann. of Math., 187:1 (2018), 221–39 | MR

[93] Lubinsky D.S., “On sharp constants in Marcinkiewicz–Zygmund and Plancherel-Polya inequalities”, Proc. Amer. Math. Soc., 142:10 (2014), 3575–3584 | DOI | MR | Zbl

[94] Lubinsky D.S., “Weighted Markov–Bernstein inequalities for entire functions of exponential type”, Publications de l'Institut Mathématique, 96:110 (2014), 181–192 | DOI | MR | Zbl

[95] Levin E., Lubinsky D., “$L_{p}$ Chritoffel functions, $L_{p}$ universality, and Paley–Wiener spaces”, J. d'Anal. Math., 125 (2015), 243–283 | DOI | MR | Zbl

[96] Levin E., Lubinsky D., “Asymptotic behavior of Nikolskii constants for polynomials on the unit circle”, Comput. Methods Funct. Theory, 15:3 (2015), 459–468 | DOI | MR | Zbl

[97] Lizorkin P.I., “Otsenki trigonometricheskikh integralov i neravenstvo Bernshteina dlya drobnykh proizvodnykh”, Izv. AN SSSR. Ser. matem., 29:1 (1965), 109–126 | Zbl

[98] Malykhin Yu.V., Ryutin K.S., “O kontsentratsii $L_{1}$-normy trigonometricheskikh polinomov i tselykh funktsii”, Matem. sb., 205:11 (2014), 95–124 | DOI | MR | Zbl

[99] Martyanov I.A., “Konstanta Nikolskogo dlya trigonometricheskikh polinomov s periodicheskim vesom Gegenbauera”, Chebyshevskii sbornik, 21:1 (2020), 247–258 | DOI | MR

[100] Milovanović G.V., Mitrinović D.S., Rassias Th.M., Topics in polynomials: Extremal problems, inequalities, zeros, World Scientific Publ. Co, Singapore, 1994 | MR | Zbl

[101] Nessel R., Wilmes G., “Nikolskii-type inequalities for trigonometric polynomials and entire functions of exponential type”, J. Austral. Math. Soc., 25:1 (1978), 7–18 | DOI | MR | Zbl

[102] Nikolskii S.M., “Neravenstva dlya tselykh funktsii konechnoi stepeni i ikh primenenie v teorii differentsiruemykh funktsii mnogikh peremennykh”, Tr. MIAN SSSR, 38, 1951, 244–278 | MR | Zbl

[103] Nikolskii S.M., Priblizhenie funktsii mnogikh peremennykh i teoremy vlozheniya, Nauka, M., 1977 | MR

[104] Nursultanov E.D., Ruzhansky M.V., Tikhonov S.Y., “Nikolskii inequality and functional classes on compact lie groups”, Funct. Anal. Its Appl., 49 (2015), 226–229 | DOI | MR | Zbl

[105] Pesenson I.Z., “Neravenstvo Bernshteina v predstavleniyakh grupp Li”, Dokl. AN SSSR, 313:4 (1990), 803–806 | Zbl

[106] Pesenson I., “Bernstein–Nikolskii inequalities and Riesz interpolation formula on compact homogeneous manifolds”, J. Approx. Theory, 150:2 (2008), 175–198 | DOI | MR | Zbl

[107] Pesenson I., “Bernstein–Nikolskii and Plancherel–Polya inequalities in $L_{p}$-norms on non-compact symmetric spaces”, Math. Nachr., 282:2 (2009), 253–269 | DOI | MR | Zbl

[108] Pinkus A., Ziegler Z., “Interlacing properties of the zeros of the error functions in best $L^{p}$-approximations”, J. Approx. Theory, 27:1 (1979), 1–18 | DOI | MR | Zbl

[109] Platonov S.S., “Garmonicheskii analiz Besselya i priblizhenie funktsii na polupryamoi”, Izv. RAN. Ser. matem., 71:5 (2007), 149–196 | DOI | MR | Zbl

[110] Queffélec H., Zarouf R., “On Bernstein's inequality for polynomials”, Anal. Math. Physyu, 9 (2019), 1181–1207 | DOI | MR | Zbl

[111] Rahman Q.I., Schmeisser G., “$L_{p}$ inequalities for entire functions of exponential type”, Trans. Amer. Math. Socyu, 320 (1990), 91–103 | MR | Zbl

[112] Runovski K., Schmeisser H.-J., “Inequalities of Calderon–Zygmund type for trigonometric polynomials”, Georgian J. of Math., 8:1 (2001), 165–179 | DOI | MR | Zbl

[113] Sege G., Ortogonalnye mnogochleny, Fizmatlit, M., 1962

[114] Shapiro H., Topics in approximation theory, Lecture notes in mathematics, 187, Springer-Verlag, Berlin–Heidelberg, 1971 | DOI | MR | Zbl

[115] Siegel C.L., “Über gitterpunkte in convexen körpern and ein damit zusammenhängendes extremalproblem”, Acta Math., 65 (1935), 307–323 | DOI | MR | Zbl

[116] Simonov I.E., Glazyrina P.Y., “Sharp Markov–Nikolskii inequality with respect to the uniform norm and the integral norm with Chebyshev weight”, J. Approx. Theory, 192 (2015), 69–81 | DOI | MR | Zbl

[117] Stein I., Veis G., Vvedenie v garmonicheskii analiz na evklidovykh prostranstvakh, Mir, M., 1974

[118] Storozhenko E.A., Krotov V.G., Osvald P., “Pryamye i obratnye teoremy tipa Dzheksona v prostranstvakh $L^{p}$, $0

1$”, Matem. sb., 98 (140):3 (11) (1975), 395–415 | MR | Zbl

[119] Taikov L.V., “Odin krug ekstremalnykh zadach dlya trigonometricheskikh polinomov”, UMN, 20:3 (1965), 205–211 | MR | Zbl

[120] Taikov L.V., “Odno obobschenie neravenstva S.N. Bernshteina”, Tr. MIAN SSSR, 78, 1965, 43–47 | MR | Zbl

[121] Taikov L.V., “O nailuchshem priblizhenii yader Dirikhle”, Matem. zametki, 53:6 (1993), 116–121 | MR | Zbl

[122] Temlyakov V.N., “Priblizhenie funktsii s ogranichennoi smeshannoi proizvodnoi”, Tr. MIAN SSSR,, 178, ed. S.M. Nikolskii, 1986, 1–112 | Zbl

[123] Temlyakov V., Tikhonov S., “Remez-type and Nikol'skii-type inequalities: General relations and the hyperbolic cross polynomials”, Constr. Approx., 46 (2017), 593–615 | DOI | MR | Zbl

[124] Tikhonov S., Yuditskii P., “Sharp Remez inequality”, Constr. Approx., 52 (2020) | DOI | MR

[125] Timan A.F., Teoriya priblizheniya funktsii deistvitelnogo peremennogo, Gos. izd-vo fiz.-mat. lit., M., 1960

[126] Vaaler J.D., “Some extremal functions in Fourier analysis”, Bull. Amer. Math. Soc. (New Series), 12:2 (1985), 183–216 | DOI | MR | Zbl

[127] Viazovska M.S., “The sphere packing problem in dimension $8$”, Ann. of Math., 185:3 (2017), 991–1015 | DOI | MR | Zbl

[128] Vilenkin N.Ya., Spetsialnye funktsii i teoriya predstavlenii grupp, Nauka, M., 1991 | MR

[129] Vinogradov O.L., Gladkaya A.V., “Tselye funktsii, naimenee uklonyayuschiesya ot nulya v ravnomernoi i integralnoi metrikakh s vesom”, Algebra i analiz, 26:6 (2014), 10–28

[130] Yudin V.A., “Polozhitelnye znacheniya polinomov”, Matem. zametki, 72:3 (2002), 477–480 | DOI | MR | Zbl

[131] Yudin V.A., “O polozhitelnykh znacheniyakh sfericheskikh garmonik i trigonometricheskikh polinomov”, Matem. zametki, 75:3 (2004), 476–480 | DOI | MR | Zbl

[132] Zastavnyi V.P., Manov A.D., “Polozhitelnaya opredelennost kompleksnoi kusochno-lineinoi funktsii i nekotorye ee primeneniya”, Matem. zametki, 103:4 (2018), 519–535 | DOI | Zbl

[133] Ziegler Z., “Minimizing the $L_{p,\infty }$-distortion of trigonometric polynomials”, J. Math. Anal. Appl., 61:2 (1977), 426–431 | DOI | MR | Zbl