Realization of focal singularities of integrable systems using billiard books with a Hooke potential field
Čebyševskij sbornik, Tome 22 (2021) no. 5, pp. 44-57.

Voir la notice de l'article provenant de la source Math-Net.Ru

Systems of particle motion in the Hooke central potential field on a billiard book glued from flat circular billiard domains are considered. An important class of nondegenerate focal singularities of the rank 0 of integrable systems with 2 degrees of freedom is completely realized by this class of billiards. Namely, for each semi-local focal singularity the constructed billiard system has a singularity fiberwise homeomorphic to the given one.
Keywords: integrable billiard, focal singularity, Liouville foliation.
@article{CHEB_2021_22_5_a4,
     author = {V. V. Vedyushkina and V. A. Kibkalo and S. E. Pustovoitov},
     title = {Realization of focal singularities of integrable systems using billiard books with a {Hooke} potential field},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {44--57},
     publisher = {mathdoc},
     volume = {22},
     number = {5},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2021_22_5_a4/}
}
TY  - JOUR
AU  - V. V. Vedyushkina
AU  - V. A. Kibkalo
AU  - S. E. Pustovoitov
TI  - Realization of focal singularities of integrable systems using billiard books with a Hooke potential field
JO  - Čebyševskij sbornik
PY  - 2021
SP  - 44
EP  - 57
VL  - 22
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2021_22_5_a4/
LA  - ru
ID  - CHEB_2021_22_5_a4
ER  - 
%0 Journal Article
%A V. V. Vedyushkina
%A V. A. Kibkalo
%A S. E. Pustovoitov
%T Realization of focal singularities of integrable systems using billiard books with a Hooke potential field
%J Čebyševskij sbornik
%D 2021
%P 44-57
%V 22
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2021_22_5_a4/
%G ru
%F CHEB_2021_22_5_a4
V. V. Vedyushkina; V. A. Kibkalo; S. E. Pustovoitov. Realization of focal singularities of integrable systems using billiard books with a Hooke potential field. Čebyševskij sbornik, Tome 22 (2021) no. 5, pp. 44-57. http://geodesic.mathdoc.fr/item/CHEB_2021_22_5_a4/

[1] Vedyushkina V.V., Fomenko A.T., “Bilyardy i integriruemost v geometrii i fizike. Novyi vzglyad i novye vozmozhnosti”, Vestn. Mosk. Univ., Seriya Mat. i Mekh., 2019, no. 3, 15–25 | MR | Zbl

[2] Bolsinov A.V., Fomenko A.T., Integriruemye gamiltonovy sistemy. Geometriya, topologiya, klassifikatsiya, v. 1, 2, Izd. dom “Udmurtskii universitet”, Izhevsk, 1999 | MR

[3] Vedyushkina V.V., Kharcheva I.S., “Billiardnye knizhki modeliruyut vse trekhmernye bifurkatsii integriruemykh gamiltonovykh sistem”, Matem. sb., 209:12 (2018), 17–56 | DOI | MR | Zbl

[4] Vedyushkina V.V., V.A. Kibkalo V.A., Fomenko A.T., “Topologicheskoe modelirovanie integriruemykh sistem billiardami: realizatsiya chislovykh invariantov”, Dokl. RAN, 493 (2020), 9–12 | DOI | MR | Zbl

[5] Vedyushkina V.V., Kibkalo V.A., “Realizatsiya bilyardami chislovogo invarianta rassloeniya Zeiferta integriruemykh sistem”, Vestn. Mosk. un-ta. Ser. 1. Matem., mekh., 2020, no. 4, 22–28 | MR | Zbl

[6] Vedyushkina V.V., Kharcheva I.S., “Billiardnye knizhki realizuyut vse bazy sloenii Liuvillya integriruemykh gamiltonovykh sistem”, Matem. sb., 212:8 (2021), 89–150 | DOI | MR | Zbl

[7] Glutsyuk A., “On polynomially integrable Birkhoff billiards on surfaces of constant curvature”, Journal of the European Mathematical Society, 23:3 (2021), 995–1049 | DOI | MR | Zbl

[8] Bialy M., Mironov A.E., “Algebraic non-integrability of magnetic billiards”, J. Phys. A, 49:45 (2016) | DOI | MR | Zbl

[9] Kaloshin V., Sorrentino A., “On the local Birkhoff conjecture for convex billiards”, Ann. of Math., 188:1 (2018), 315–380 | DOI | MR | Zbl

[10] Fomenko A.T., Tsishang Kh., “Topologicheskii invariant i kriterii ekvivalentnosti integriruemykh gamiltonovykh sistem s dvumya stepenyami svobody”, Izv. AN SSSR. Ser. matem., 54:3 (1990), 546–575 | Zbl

[11] Kibkalo V.A., Fomenko A.T., Kharcheva I.S., “Realizatsiya integriruemykh gamiltonovykh sistem bilyardnymi knizhkami”, Tr. MMO, 82, no. 1, 2021, 49–78 | MR

[12] Kharcheva I.S., “Izoenergeticheskie mnogoobraziya bilyardnykh knizhek”, Vestn. Mosk. un-ta. Ser. 1. Matem., mekh., 2020, no. 4, 12–22 | MR | Zbl

[13] Eliasson L.H., “Normal forms for Hamiltonian systems with Poisson commuting integrals — elliptic case”, Commentarii Mathematici Helvetici, 65 (1990), 4–35 | DOI | MR | Zbl

[14] Zung N.T., “Symplectic topology of integrable Hamiltonian systems. I: Arnold-Liouville with singularities”, Compositio Math., 101:2 (1996), 179–215 | MR | Zbl

[15] Kibkalo V. A., “Billiardy s potentsialom modeliruyut ryad chetyrekhmernykh osobennostei integriruemykh sistem”, Sovr. probl. matem. mekh., Mater. mezhd. konf. posvyasch. 80-letiyu akad. RAN V.A. Sadovnichego, v. 2, M., 2019, 563–566

[16] Fomenko A.T., Kibkalo V.A., “Saddle Singularities in Integrable Hamiltonian Systems: Examples and Algorithms”, Contemp. Appr. Meth. in Fund. Math. Mech., Understanding Complex Systems, eds. V. A. Sadovnichiy, M. Z. Zgurovsky, Springer, Cham, 2021, 1–24 | MR

[17] Kobtsev I. F., “Geodezicheskii potok dvumernogo ellipsoida v pole uprugoi sily: topologicheskaya klassifikatsiya reshenii”, Vestn. Mosk. un-ta. Ser. 1. Matem., mekh., 2018, no. 2, 27–33 | MR | Zbl

[18] Pustovoitov S.E., “Topologicheskii analiz billiarda v ellipticheskom koltse v potentsialnom pole”, Fund. prikl. matem., 22:6 (2019), 201–225 | MR

[19] Pustovoitov S.E., “Topologicheskii analiz billiarda, ogranichennogo sofokusnymi kvadrikami, v potentsialnom pole”, Matem. sb., 212:2 (2021), 81–105 | DOI | MR | Zbl

[20] Vedyushkina V.V., Integriruemye billiardy na kletochnykh kompleksakh i integriruemye gamiltonovy sistemy, Dokt. diss., MGU, M., 2020

[21] Lazutkin V., KAM Theory and Semiclassical Approximations to Eigenfunctions, Springer, Berlin, 1993 | MR | Zbl

[22] Bolsinov A., Izosimov A., “Smooth invariants of focus-focus singularities and obstructions to product decomposition”, J. of Symplectic Geom., 17:6 (2019), 1613–1648 | DOI | MR | Zbl

[23] S. Vũ Ngọc, “On semi-global invariants for focus-focus singularities”, Topology, 42 (2003), 365–380 | DOI | MR | Zbl

[24] A. Pelayo, S. Vũ Ngọc, “Semitoric integrable systems on symplectic 4-manifolds”, Invent. Math., 177 (2009), 571–597 | DOI | MR | Zbl

[25] A. A. Oshemkov, “Klassifikatsiya giperbolicheskikh osobennostei ranga nul integriruemykh gamiltonovykh sistem”, Matem. sb., 201:8 (2010), 63–102 | DOI | Zbl

[26] Kozlov I.K., Oshemkov A.A., “Klassifikatsiya osobennostei tipa sedlo-fokus”, Chebyshevskii sbornik, 21:2 (2020), 228–243 | DOI | MR | Zbl