On generalized non-uniform Korobov grids
Čebyševskij sbornik, Tome 22 (2021) no. 5, pp. 365-373
Voir la notice de l'article provenant de la source Math-Net.Ru
Generalized non-uniform Korobov grids are considered in the paper.
Three new constructions are considered: the product of non-uniform grids by mutually simple modules; modified non-uniform grids; the product of an uneven grid and a parallelepipedal grid by a mutually simple module.
A paradoxical result is established about the value of the mathematical expectation of the error of approximate integration over modified non-uniform grids.
It is shown that the algorithm of approximate integration using the product of an uneven grid and a parallelepipedal grid in a mutually simple module is unsaturated with the order $\frac{\alpha}{2}$.
Keywords:
hyperbolic zeta function of the grid, uneven Korobov grids, hyperbolic zeta function of the lattice.
@article{CHEB_2021_22_5_a27,
author = {N. N. Dobrovol'skii and I. Yu. Rebrova and N. M. Dobrovol'skii},
title = {On generalized non-uniform {Korobov} grids},
journal = {\v{C}eby\v{s}evskij sbornik},
pages = {365--373},
publisher = {mathdoc},
volume = {22},
number = {5},
year = {2021},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/CHEB_2021_22_5_a27/}
}
TY - JOUR AU - N. N. Dobrovol'skii AU - I. Yu. Rebrova AU - N. M. Dobrovol'skii TI - On generalized non-uniform Korobov grids JO - Čebyševskij sbornik PY - 2021 SP - 365 EP - 373 VL - 22 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CHEB_2021_22_5_a27/ LA - ru ID - CHEB_2021_22_5_a27 ER -
N. N. Dobrovol'skii; I. Yu. Rebrova; N. M. Dobrovol'skii. On generalized non-uniform Korobov grids. Čebyševskij sbornik, Tome 22 (2021) no. 5, pp. 365-373. http://geodesic.mathdoc.fr/item/CHEB_2021_22_5_a27/