On generalized non-uniform Korobov grids
Čebyševskij sbornik, Tome 22 (2021) no. 5, pp. 365-373
Cet article a éte moissonné depuis la source Math-Net.Ru
Generalized non-uniform Korobov grids are considered in the paper. Three new constructions are considered: the product of non-uniform grids by mutually simple modules; modified non-uniform grids; the product of an uneven grid and a parallelepipedal grid by a mutually simple module. A paradoxical result is established about the value of the mathematical expectation of the error of approximate integration over modified non-uniform grids. It is shown that the algorithm of approximate integration using the product of an uneven grid and a parallelepipedal grid in a mutually simple module is unsaturated with the order $\frac{\alpha}{2}$.
Keywords:
hyperbolic zeta function of the grid, uneven Korobov grids, hyperbolic zeta function of the lattice.
@article{CHEB_2021_22_5_a27,
author = {N. N. Dobrovol'skii and I. Yu. Rebrova and N. M. Dobrovol'skii},
title = {On generalized non-uniform {Korobov} grids},
journal = {\v{C}eby\v{s}evskij sbornik},
pages = {365--373},
year = {2021},
volume = {22},
number = {5},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/CHEB_2021_22_5_a27/}
}
N. N. Dobrovol'skii; I. Yu. Rebrova; N. M. Dobrovol'skii. On generalized non-uniform Korobov grids. Čebyševskij sbornik, Tome 22 (2021) no. 5, pp. 365-373. http://geodesic.mathdoc.fr/item/CHEB_2021_22_5_a27/
[1] Dobrovolskaya L. P., Dobrovolskii N. M., Simonov A. S., “O pogreshnosti priblizhennogo integrirovaniya po modifitsirovannym setkam”, Chebyshevskii sbornik, 9:1(25) (2008), 185–223 | MR | Zbl
[2] Dobrovolskii N. M., O kvadraturnykh formulakh na klassakh $E^\alpha_s(c)$ i $H^\alpha_s(c)$, Dep. v VINITI 24.08.84, No6091–84
[3] Korobov N. M., Teoretiko-chislovye metody v priblizhennom analize, Fizmatgiz, M., 1963
[4] Korobov N. M., Teoretiko-chislovye metody v priblizhennom analize, vtoroe izdanie, MTsNMO, M., 2004, 288 pp.