About one functional equation
Čebyševskij sbornik, Tome 22 (2021) no. 5, pp. 359-364.

Voir la notice de l'article provenant de la source Math-Net.Ru

The hyperbolic zeta function of a two-dimensional lattice of Dirichlet approximations is studied. A functional equation is found for the hyperbolic zeta function of a two-dimensional lattice of Dirichlet approximations in the case of rational $\beta$, which sets an analytical continuation on the entire complex plane, except for the point $\alpha=1$, in which the pole is of the first order. The found functional equation allows us to raise the question of continuity for the hyperbolic zeta function of a two-dimensional lattice of Dirichlet approximations in the case of rational $\beta$.
Keywords: Riemann zeta function, Dirichlet series, Hurwitz zeta function.
@article{CHEB_2021_22_5_a26,
     author = {M. N. Dobrovol'skii and N. N. Dobrovol'skii and N. M. Dobrovol'skii},
     title = {About one functional equation},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {359--364},
     publisher = {mathdoc},
     volume = {22},
     number = {5},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2021_22_5_a26/}
}
TY  - JOUR
AU  - M. N. Dobrovol'skii
AU  - N. N. Dobrovol'skii
AU  - N. M. Dobrovol'skii
TI  - About one functional equation
JO  - Čebyševskij sbornik
PY  - 2021
SP  - 359
EP  - 364
VL  - 22
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2021_22_5_a26/
LA  - ru
ID  - CHEB_2021_22_5_a26
ER  - 
%0 Journal Article
%A M. N. Dobrovol'skii
%A N. N. Dobrovol'skii
%A N. M. Dobrovol'skii
%T About one functional equation
%J Čebyševskij sbornik
%D 2021
%P 359-364
%V 22
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2021_22_5_a26/
%G ru
%F CHEB_2021_22_5_a26
M. N. Dobrovol'skii; N. N. Dobrovol'skii; N. M. Dobrovol'skii. About one functional equation. Čebyševskij sbornik, Tome 22 (2021) no. 5, pp. 359-364. http://geodesic.mathdoc.fr/item/CHEB_2021_22_5_a26/

[1] L. P. Dobrovolskaya, M. N. Dobrovolskii, N. M. Dobrovolskii, N. N. Dobrovolskii, “Giperbolicheskie dzeta-funktsii setok i reshetok i vychislenie optimalnykh koeffitsientov”, Chebyshevskii sbornik, 13:4(44) (2012), 4–107 | Zbl

[2] Dobrovolskii M. N., “Ryady Dirikhle s periodicheskimi koeffitsientami i funktsionalnoe uravnenie dlya giperbolicheskoi dzeta-funktsii tselochislennykh reshetok”, Chebyshevskii sbornik, 3:2(4) (2006), 43–59

[3] Dobrovolskii M. N., “Funktsionalnoe uravnenie dlya giperbolicheskoi dzeta-funktsii tselochislennykh reshetok”, DAN, 412:3 (2007), 302–304 | Zbl

[4] Dobrovolskii M. N., “Funktsionalnoe uravnenie dlya giperbolicheskoi dzeta-funktsii tselochislennykh reshetok”, Vestn. Mosk. un-ta. Ser. 1. Matematika. Mekhanika, 2007, no. 3, 18–23 | Zbl

[5] N. M. Dobrovolskii, N. N. Dobrovolskii, V. N. Soboleva, D. K. Sobolev, L. P. Dobrovolskaya, O. E. Bocharova, “O giperbolicheskoi dzeta-funktsii Gurvitsa”, Chebyshevskii sb., 17:3 (2016), 72–105 | DOI | MR | Zbl

[6] Dobrovolskaya L. P., Dobrovolsky M. N., Dobrovol'skii N. M., Dobrovolsky N. N., “On Hyperbolic Zeta Function of Lattices”, Continuous and Distributed Systems. Solid Mechanics and Its Applications, 211 (2014), 23–62 | DOI | MR | Zbl