Refinement of Bernstein--Nikolskii constant for the sphere with Dunkl weight in the case of octahedron group
Čebyševskij sbornik, Tome 22 (2021) no. 5, pp. 354-358.

Voir la notice de l'article provenant de la source Math-Net.Ru

We continue the study of the sharp Bernstein–Nikolskii constants for spherical polynomials in the space $L^{p}(\mathbb{S}^{d})$ with the Dunkl weight. We consider the model case of the octahedral reflection group $\mathbb{Z}_{2}^{d+1}$ and weight $\prod_{j=1}^{d+1}|x_{j}|^{2\kappa_{j}} $ when the explicit form of the Dunkl intertwining operator is known. We show that for $\min \kappa=0$ the multidimensional problem is reduced to the one-dimensional problem for the Gegenbauer weight, otherwise not.
Keywords: spherical polynomial, reproducing kernel, Dunkl weight, Bernstein–Nikoskii constant.
@article{CHEB_2021_22_5_a25,
     author = {D. V. Gorbachev and N. N. Dobrovol'skii and I. A. Martyanov},
     title = {Refinement of {Bernstein--Nikolskii} constant for the sphere with {Dunkl} weight in the case of octahedron group},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {354--358},
     publisher = {mathdoc},
     volume = {22},
     number = {5},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2021_22_5_a25/}
}
TY  - JOUR
AU  - D. V. Gorbachev
AU  - N. N. Dobrovol'skii
AU  - I. A. Martyanov
TI  - Refinement of Bernstein--Nikolskii constant for the sphere with Dunkl weight in the case of octahedron group
JO  - Čebyševskij sbornik
PY  - 2021
SP  - 354
EP  - 358
VL  - 22
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2021_22_5_a25/
LA  - ru
ID  - CHEB_2021_22_5_a25
ER  - 
%0 Journal Article
%A D. V. Gorbachev
%A N. N. Dobrovol'skii
%A I. A. Martyanov
%T Refinement of Bernstein--Nikolskii constant for the sphere with Dunkl weight in the case of octahedron group
%J Čebyševskij sbornik
%D 2021
%P 354-358
%V 22
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2021_22_5_a25/
%G ru
%F CHEB_2021_22_5_a25
D. V. Gorbachev; N. N. Dobrovol'skii; I. A. Martyanov. Refinement of Bernstein--Nikolskii constant for the sphere with Dunkl weight in the case of octahedron group. Čebyševskij sbornik, Tome 22 (2021) no. 5, pp. 354-358. http://geodesic.mathdoc.fr/item/CHEB_2021_22_5_a25/

[1] Gorbachev D.V., Dobrovolskii N.N., “Konstanty Nikolskogo–Bernshteina v $L^{p}$ na sfere s vesom Danklya”, Chebyshevskii sbornik, 21:4 (2020), 302–307 | DOI | MR | Zbl

[2] Dai F., Xu Yu, Approximation theory and harmonic analysis on spheres and balls, Springer, N.Y., 2013 | MR | Zbl

[3] Dai F., Xu Yu, Analysis on $h$-harmonics and Dunkl transforms, Birkhauser/Springer, CRM Barcelona, Basel, 2015 | MR | Zbl

[4] Gorbachev D.V., Martyanov I.A., “Granitsy polinomialnykh konstant Nikolskogo v $L^{p}$ s vesom Gegenbauera”, Tr. IMM UrO RAN, 26, no. 4, 2020, 126–137