On some properties of the constant of the best joint Diophantine approximations
Čebyševskij sbornik, Tome 22 (2021) no. 5, pp. 340-345.

Voir la notice de l'article provenant de la source Math-Net.Ru

The article considers the question of the behavior of the values of $ C_n $ with increasing $ n $, where $ C_n $ is the constant of the best joint diophantine approximations. Shows the differences in this question for $ l_2 $ and $ \max $ norms are shown.
Keywords: Diophanite approximations, best joint diophantine approximations constants.
@article{CHEB_2021_22_5_a22,
     author = {Yu. A. Basalov and A. N. Basalova},
     title = {On some properties of the constant of the best joint {Diophantine} approximations},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {340--345},
     publisher = {mathdoc},
     volume = {22},
     number = {5},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2021_22_5_a22/}
}
TY  - JOUR
AU  - Yu. A. Basalov
AU  - A. N. Basalova
TI  - On some properties of the constant of the best joint Diophantine approximations
JO  - Čebyševskij sbornik
PY  - 2021
SP  - 340
EP  - 345
VL  - 22
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2021_22_5_a22/
LA  - ru
ID  - CHEB_2021_22_5_a22
ER  - 
%0 Journal Article
%A Yu. A. Basalov
%A A. N. Basalova
%T On some properties of the constant of the best joint Diophantine approximations
%J Čebyševskij sbornik
%D 2021
%P 340-345
%V 22
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2021_22_5_a22/
%G ru
%F CHEB_2021_22_5_a22
Yu. A. Basalov; A. N. Basalova. On some properties of the constant of the best joint Diophantine approximations. Čebyševskij sbornik, Tome 22 (2021) no. 5, pp. 340-345. http://geodesic.mathdoc.fr/item/CHEB_2021_22_5_a22/

[1] Basalov Yu. A., “Otsenki konstanty sovmestnykh diofantovykh priblizhenii”, Chebyshevskii sbornik, 20:3 (2019), 405–429 | DOI | MR | Zbl

[2] Cassels J. W. S., “Simultaneous Diophantine approximation”, J. London Math. Soc., 30 (1955), 119–121 | DOI | MR | Zbl

[3] Cusick T. W., “Estimates for Diophantine approximation constants”, Journal of Number Theory, 12:4 (1980), 543–556 | DOI | MR | Zbl

[4] Davenport H., Mahler K., “Simultaneous Diophantine approximation”, Duke Math. J., 13 (1946), 105–111 | DOI | MR | Zbl

[5] Davenport H., “On a theorem of Furtwängler”, J. London Math. Soc., 30 (1955), 186–195 | DOI | MR | Zbl

[6] Dirichlet L. G. P., “Verallgemeinerung eines Satzes aus der Lehre von den Kettenbruchen nebst einigen Anwendungen auf die Theorie der Zahlen”, S. B. Preuss. Akad. Wiss., 1842, 93–95

[7] Hurwitz A., “Über die angenaherte Darstellung der Irrationalzahlen durch rationaleBrüche”, Math. Ann., 39 (1891), 279–284 | DOI | MR

[8] Krass S., “The $N$-dimensional diophantine approximation constants”, Australian Mathematical Society, 32:2 (1985), 313–316 | DOI | MR | Zbl

[9] Mack J. M., “Simultaneous Diophantine approximation”, J. Austral. Math. Soc. A, 24 (1977), 266–285 | DOI | MR | Zbl

[10] Nowak W. G., “A note on simultaneous Diophantine approximation”, Manuscr. Math., 36 (1981), 33–46 | DOI | MR | Zbl

[11] Nowak W. G., “Simultaneous Diophantine approximation: Searching for analogues of Hurwitz's theorem”, Essays in mathematics and its applications, eds. T.M. Rassias and P.M. Pardalos, Springer, Switzerland, 2016, 181–197 | MR | Zbl

[12] Odlyzko A. M., “Bounds for discriminants and related estimates for class numbers, regulators and zeros of zeta functions : a survey of recent results”, Journal de Theorie des Nombres de Bordeaux, 2:1 (1990), 119–141 | MR | Zbl

[13] Spohn W.G., “Blichfeldt's theorem and simultaneous Diophantine approximation”, Amer. J. Math., 90 (1968), 885–894 | DOI | MR | Zbl