On a Cauchy problem with periodic initial values
Čebyševskij sbornik, Tome 22 (2021) no. 5, pp. 16-24.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the paper, the method of exponential sums is applied to the solution of partial differential equation. At the initial step, the authors decrease the dimension of the problem by separation of variables. Thus the initial problem reduses to the system of the ordinary differential equations. This allows one to use Fourier analysis.
Keywords: the wave equation, Helmgoltz equation, the separation of varuales method, the Fourier analysis.
@article{CHEB_2021_22_5_a2,
     author = {L. G. Arkhipova and V. N. Chubarikov},
     title = {On a {Cauchy} problem with periodic initial values},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {16--24},
     publisher = {mathdoc},
     volume = {22},
     number = {5},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2021_22_5_a2/}
}
TY  - JOUR
AU  - L. G. Arkhipova
AU  - V. N. Chubarikov
TI  - On a Cauchy problem with periodic initial values
JO  - Čebyševskij sbornik
PY  - 2021
SP  - 16
EP  - 24
VL  - 22
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2021_22_5_a2/
LA  - ru
ID  - CHEB_2021_22_5_a2
ER  - 
%0 Journal Article
%A L. G. Arkhipova
%A V. N. Chubarikov
%T On a Cauchy problem with periodic initial values
%J Čebyševskij sbornik
%D 2021
%P 16-24
%V 22
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2021_22_5_a2/
%G ru
%F CHEB_2021_22_5_a2
L. G. Arkhipova; V. N. Chubarikov. On a Cauchy problem with periodic initial values. Čebyševskij sbornik, Tome 22 (2021) no. 5, pp. 16-24. http://geodesic.mathdoc.fr/item/CHEB_2021_22_5_a2/

[1] Miller U., Simmetriya i razdelenie peremennykh, Mir, M., 1981, 342 pp.

[2] Vinogradov I. M., Osobye varianty metoda trigonometricheskikh summ, Fizmatlit, M., 1976, 144 pp. | MR

[3] Kurant R., Uravneniya s chastnymi proizvodnymi, Mir, M., 1964, 830 pp.

[4] Hua Loo-Keng, Selected Papers, N.Y.–Heidelberg–Berlin, 1983, 888 pp. | MR | Zbl

[5] Arkhipov G. I., Izbrannye trudy, Izd-vo Orlovskogo un-ta, Orel, 2013, 464 pp.

[6] Arkhipov G. I., Sadovnichii V. A., Chubarikov V. N., Lektsii po matematicheskomu analizu, 4-e izd., ispr., Drofa, M., 2004, 640 pp.