Scattering of a plane sound wave by a sphere with an inhomogeneous anisotropic coating near the flat surface
Čebyševskij sbornik, Tome 22 (2021) no. 5, pp. 223-233.

Voir la notice de l'article provenant de la source Math-Net.Ru

In paper the problem of scattering of a plane sound wave by an absolutely solid sphere with a continuously inhomogeneous anisotropic elastic coating in the presence of a flat surface is considered. It is believed that the body is placed in an ideal fluid, the spreading flat surface is absolutely rigid and absolutely soft, the laws of heterogeneity of the coating material are described by differentiable radial coordinate functions. The approximate analytical solution to the problem is obtained for the case when the material of the sphere coating is radially inhomogeneous and transversally isotropic. In this case the reflection from the plane of the waves scattered by the body is not taken into account, but scattering by the sphere of the wave arising from the reflection of the incident wave from the plane is taken into account. By virtue of the linear formulation of the problem, the velocity potential of the total acoustic field is represented as the sum of the potentials of the incident plane wave; wave arising from the reflection of the incident plane waves from the plane; wave arising from the scattering of an incident plane wave by sphere; wave arising from scattering by a sphere reflected from plane of the wave. Wave fields in a containing medium are described by expansions in spherical wave functions. A boundary value problem is constructed for a system of ordinary differential equations of the second order for finding displacement fields in an inhomogeneous anisotropic coating of sphere.
Keywords: scattering, sound waves, absolutely solid sphere, inhomogeneous anisotropic coating.
@article{CHEB_2021_22_5_a13,
     author = {L. A. Tolokonnikov},
     title = {Scattering of a plane sound wave by a sphere with an inhomogeneous anisotropic coating near the flat surface},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {223--233},
     publisher = {mathdoc},
     volume = {22},
     number = {5},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2021_22_5_a13/}
}
TY  - JOUR
AU  - L. A. Tolokonnikov
TI  - Scattering of a plane sound wave by a sphere with an inhomogeneous anisotropic coating near the flat surface
JO  - Čebyševskij sbornik
PY  - 2021
SP  - 223
EP  - 233
VL  - 22
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2021_22_5_a13/
LA  - ru
ID  - CHEB_2021_22_5_a13
ER  - 
%0 Journal Article
%A L. A. Tolokonnikov
%T Scattering of a plane sound wave by a sphere with an inhomogeneous anisotropic coating near the flat surface
%J Čebyševskij sbornik
%D 2021
%P 223-233
%V 22
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2021_22_5_a13/
%G ru
%F CHEB_2021_22_5_a13
L. A. Tolokonnikov. Scattering of a plane sound wave by a sphere with an inhomogeneous anisotropic coating near the flat surface. Čebyševskij sbornik, Tome 22 (2021) no. 5, pp. 223-233. http://geodesic.mathdoc.fr/item/CHEB_2021_22_5_a13/

[1] Tolokonnikov L. A., “Rasseyanie ploskoi zvukovoi volny uprugim sharom s neodnorodnym pokrytiem”, Prikladnaya matematika i mekhanika, 78:4 (2014), 519–526 | Zbl

[2] Tolokonnikov L. A., Rodionova G. A., “Difraktsiya sfericheskoi zvukovoi volny na uprugom share s neodnorodnym pokrytiem”, Izvestiya Tulskogo gos. un-ta. Estestvennye nauki, 2014, no. 3, 131–137

[3] Tolokonnikov L. A., “Difraktsiya tsilindricheskikh zvukovykh voln na uprugoi sfere s neodnorodnym pokrytiem”, Prikladnaya matematika i mekhanika, 79:5 (2015), 663–673 | Zbl

[4] Tolokonnikov L. A., “Difraktsiya ploskoi zvukovoi volny na uprugom share s neodnorodnym pokrytiem i proizvolno raspolozhennoi sfericheskoi polostyu”, Izvestiya Tulskogo gos. un-ta. Estestvennye nauki, 2014, no. 2, 181–193

[5] Tolokonnikov L. A., Larin N. V., Skobeltsyn S. A., “Modelirovanie neodnorodnogo pokrytiya uprugogo shara s trebuemymizvukootrazhayuschimi svoistvami”, Matematicheskoe modelirovanie, 29:11 (2017), 89–98 | Zbl

[6] Tolokonnikov L. A., “Modelirovanie nepreryvno-neodnorodnogo pokrytiya uprugogo shara sistemoi odnorodnykh uprugikh sloev v zadache rasseyaniya zvuka”, Prikladnaya matematika i mekhanika, 81:6 (2017), 699–707 | Zbl

[7] Larin N. V., Tolokonnikov L. A., “Rasseyanie zvuka termouprugim sharom s nepreryvno-neodnorodnym pokrytiem v teploprovodnoi zhidkosti”, Matematicheskoe modelirovanie, 31:5 (2019), 20–38 | DOI | Zbl

[8] Tolokonnikov L. A., “Difraktsiya ploskoi zvukovoi volny na uprugom share s neodnorodnym pokrytiem, raspolozhennom vblizi ploskosti”, Chebyshevskii sbornik, 19:2 (2018), 199–216 | DOI | MR | Zbl

[9] Skobeltsyn S. A., Tolokonnikov L. A., “Difraktsiya zvuka na share s neodnorodnym pokrytiem v ploskom volnovode”, Prikladnaya matematika i mekhanika, 84:5 (2020), 625–639 | DOI | Zbl

[10] Tolokonnikov L. A., Tolokonnikov S. L., “Difraktsiya ploskoi zvukovoi volny na uprugom share s neodnorodnym transversalno-izotropnym sloem”, Chebyshevskii sbornik, 22:3 (2021), 423–437 | DOI | MR | Zbl

[11] Shenderov E. L., Volnovye zadachi gidroakustiki, Sudostroenie, L., 1972, 352 pp.

[12] Novatskii V., Teoriya uprugosti, Mir, M., 1975, 872 pp.

[13] Ivanov E. A., Difraktsiya elektromagnitnykh voln na dvukh telakh, Nauka i tekhnika, Minsk, 1968, 584 pp.