Partial orders and idempotents of monoids
Čebyševskij sbornik, Tome 22 (2021) no. 4, pp. 183-199.

Voir la notice de l'article provenant de la source Math-Net.Ru

Idempotents of the monoid play different roles in the formation of its properties. A set of idempotents is divided into three parts: incomparable with a unit, less and equal to a unit, and more and equal to a unit. The idempotents of the first part are called primary and the idempotents comparable with a unit are called secondary. The properties of idempotents are investigated in terms of partial orders and Green’s equivalences. In the article the main attention is given to finding connections among different classical and non-classical, stable and unstable partial orders and roles which the idempotents play in that. In particular, as a result, the criterion of stability of Mitsch’s partial order is obtained. Different examples of ordered monoids are shown in the context of the constructed theory of idempotents and partial orders.
Keywords: idempotents, partial ordered monoid, natural order for semigroup, Green's classes.
@article{CHEB_2021_22_4_a8,
     author = {V. B. Poplavski},
     title = {Partial orders and idempotents of monoids},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {183--199},
     publisher = {mathdoc},
     volume = {22},
     number = {4},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2021_22_4_a8/}
}
TY  - JOUR
AU  - V. B. Poplavski
TI  - Partial orders and idempotents of monoids
JO  - Čebyševskij sbornik
PY  - 2021
SP  - 183
EP  - 199
VL  - 22
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2021_22_4_a8/
LA  - ru
ID  - CHEB_2021_22_4_a8
ER  - 
%0 Journal Article
%A V. B. Poplavski
%T Partial orders and idempotents of monoids
%J Čebyševskij sbornik
%D 2021
%P 183-199
%V 22
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2021_22_4_a8/
%G ru
%F CHEB_2021_22_4_a8
V. B. Poplavski. Partial orders and idempotents of monoids. Čebyševskij sbornik, Tome 22 (2021) no. 4, pp. 183-199. http://geodesic.mathdoc.fr/item/CHEB_2021_22_4_a8/

[1] Vagner V. V., “Obobschennye gruppy”, DAN SSSR, 1952, no. 84, 1119–1122 | Zbl

[2] Vagner V. V., “Predstavlenie uporyadochennykh polugrupp”, Matem. sb., 38(80):2 (1956), 203–240 | Zbl

[3] Mitsch H., “A Natural Partial Order for Semigroups”, Proc. Amer. Math. Soc., 97:3 (1986), 384–388 | DOI | MR | Zbl

[4] Hartwig R., “How to partially order regular elements”, Math. Japonica, 25:1 (1980), 1–13 | MR | Zbl

[5] Nambooripad K., “The natural partial order on a regular semigroup”, Proc. Edin. Math. Soc., 23 (1980), 249–260 | DOI | MR | Zbl

[6] Mitsch H., “Semigroups and their natural order”, Math. Slovaca, 44:4 (1994), 445–462 | MR | Zbl

[7] Poplavskii V. B., “Ob idempotentakh algebry bulevykh matrits”, Izvestiya Sarat. un-ta. Nov. ser. Ser. Matematika. Mekhanika. Informatika, 12:2 (2012), 26–33 | MR | Zbl

[8] Poplavskii V. B., “Delimost idempotentov polugruppy bulevykh matrits”, cb. nauch. tr., Matematika, mekhanika, 18, Izd-vo Sarat. un-ta, Saratov, 2016, 57–60

[9] Poplavskii V. B., “O chastichnykh poryadkakh na mnozhestve bulevykh matrits”, Elektronnye informatsionnye sistemy, 2017, no. 3(14), 105–113

[10] Klifford A., Preston G., Algebraicheskaya teoriya polugrupp, v 2t., v. 1, Mir, M., 1972, 288 pp.

[11] Lalleman Zh., Polugruppy i kombinatornye prilozheniya, Mir, M., 1985, 440 pp.

[12] Miller D. D., Clifford A. H., “Regular $\cal D-$classes in semigroups.”, Trans. Amer. Math. Soc., 82 (1956), 1–15 | DOI | MR

[13] Schekaturova O. O., Yaroshevich V. A., “O svoistvakh bulevykh matrits”, Izv. Sarat. un-ta Nov. ser. Ser. Matematika. Mekhanika. Informatika, 13:4(2) (2013), 137–142

[14] Poplavskii V. B., Yavkaev D. G., “Ob inversnykh D-klassakh polugruppy bulevykh matrits”, Algebra, teoriya chisel i diskretnaya geometriya: sovremennye problemy, prilozheniya i problemy istorii, Materialy XVI Mezhdunar. konf., Tul. gos. ped. un-t im. L. N. Tolstogo, Tula, 2019, 112–114 http://poivs.tsput.ru/conf/international/XVI/files/Conference2019M.pdf

[15] Poplavskii V. B., Yavkaev D. G., “Vychislenie inversnykh D-klassov bulevykh matrits”, cb. nauch. tr., Matematika, mekhanika, 21, Izd-vo Sarat. un-ta, Saratov, 2019, 50–52

[16] Klifford A., Preston G., Algebraicheskaya teoriya polugrupp, v 2t., v. 2, Mir, M., 1972, 422 pp. | MR

[17] Higgins P.M., “The Mitsch order on a semigroup”, Semigroup Forum, 49 (1994), 261–266 | DOI | MR | Zbl