Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHEB_2021_22_4_a20, author = {I. M. Burkin and O. I. Kuznetsova}, title = {New megastable system with {2-D} strip of hidden attractors and analytical solutions}, journal = {\v{C}eby\v{s}evskij sbornik}, pages = {361--369}, publisher = {mathdoc}, volume = {22}, number = {4}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CHEB_2021_22_4_a20/} }
TY - JOUR AU - I. M. Burkin AU - O. I. Kuznetsova TI - New megastable system with 2-D strip of hidden attractors and analytical solutions JO - Čebyševskij sbornik PY - 2021 SP - 361 EP - 369 VL - 22 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CHEB_2021_22_4_a20/ LA - ru ID - CHEB_2021_22_4_a20 ER -
I. M. Burkin; O. I. Kuznetsova. New megastable system with 2-D strip of hidden attractors and analytical solutions. Čebyševskij sbornik, Tome 22 (2021) no. 4, pp. 361-369. http://geodesic.mathdoc.fr/item/CHEB_2021_22_4_a20/
[1] Rossler O., Adryaman Y., Shaukat S. and all., “Chaos Theory and Applications in applied sciences and engineering”, An interdisciplinary journal of nonlinear science, 2:1 (2020) | MR
[2] Pisarchik A. N., Feudel U., “Control of multistability”, Phys. Rep., 540 (2014), 167–218 | DOI | MR | Zbl
[3] Leonov G., Kuznetsov N., “Hidden attractors in dynamical systems. From hidden oscillations in Hilbert-Kolmogorov, Aizerman, and Kalman problems to hidden chaotic attractors in Chua circuits”, International Journal of Bifurcation and Chaos, 23:1 (2013), 1330002 | DOI | MR | Zbl
[4] Burkin I., Nguen N. K., “Analytical-Numerical Methods of Finding Hidden Oscillations in Multidimensional Dy-namical Systems”, Diff. Equations, 50:13 (2014), 1695–1717 | DOI | MR | Zbl
[5] Wei Z., Zhang W., “Hidden Hyperchaotic Attractors in a Modified Lorenz-Stenflo System with Only One Stable Equilibrium”, Int. J. Bifurcation Chaos, 24:10 (2014), 1450127 | DOI | MR | Zbl
[6] Guanrong C., “Chaos Theory and Applications: A New Trend”, Chaos Theory and Applications, 3:1 (2021), 1–2
[7] Burkin I. M., “Skrytye attraktory nekotorykh multistabilnykh sistem s beskonechnym chislom sostoyanii ravnovesiya”, Chebyshevskii sb., 18:2 (2017), 18–33 | DOI | MR | Zbl
[8] Pham V-T., Volos C., Jafari S., Wei Z., Wang X., “Constructing a novel no-equilibrium chaotic system”, Int. J. Bifurcation Chaos, 24:5 (2014), 1450073 | DOI | MR | Zbl
[9] Faghani Z. Nazarimehr F., Jafari S,. Sprott J.C., “Simple Chaotic Systems with Specific Analytical Solutions”, Int. J. Bifurcation Chaos, 29:9 (2019), 1950116 | DOI | MR | Zbl
[10] Li C., Lu T., Chen G., Xing H., “Doubling the coexisting attractors”, Chaos, 29 (2019), 051102 | DOI | MR | Zbl
[11] Zhang X., Chen G., Chaos, 27:0 Constructing an autonomous system with infinitely many chaotic attractors (2017), 071101 | DOI | MR | Zbl
[12] Li C., Sprott J. C., Hu W., Xu Y., Int J Bifurc. Chaos, 27:0Infinite multistability in a self-reproducing chaotic system (2017), 1750160 | DOI | MR | Zbl
[13] Burkin I. M., Kuznetsova O. I., “Konstruirovanie megastabilnykh sistem s mnogomernoi reshetkoi khaoticheskikh attraktorov”, Chebyshevckii sbornik, 22:1 (2021), 105–117 | DOI | MR | Zbl
[14] Burkin I. M., Kuznetsova O. I., “On some methods for generating extremely multistable systems”, Journal of Physics: Conf. Series, 1368 (2019), 042050 | DOI
[15] Burkin I. M., Kuznetsova O. I., “Generation of Extremely Multistable Systems Based on Lurie Systems”, Vestnik St. Petersburg University, Mathematics, 52:4 (2019), 342–348 | DOI | MR | Zbl
[16] Sprott J., “Do We Need More Chaos Examples”, Chaos Theory and Applications, 2:2 (2020), 1–3
[17] Sprott J., Hoover W., Hoover C., “Heat Condition, and the Lack Thereof, in Time-Reversible Dynamical Systems: Generalized Nos'e-Hoover Oscillators with a Temperature Gradient”, Phys. Rev. E, 89 (2014), 042914 | DOI
[18] Leonov G. A., “Analytical analysis of a Nose-Hoover generator”, Dokl. Phys., 6 (2016), 340–342 | DOI | MR