Gaussian sums and their application to the proof of quadratic reciprocity law
Čebyševskij sbornik, Tome 22 (2021) no. 4, pp. 7-87.

Voir la notice de l'article provenant de la source Math-Net.Ru

This is the first publication of I. M. Vinogravos's senior thesis written under the scientific guidance of Ya. V. Uspensky at the mathematical department of the Faculty of physics and mathematics of Petersbourg's University in 1914.
Keywords: Gaussian sums, Legendre symbol, quadratic residues and non-residues, quadratic reciprocity law.
@article{CHEB_2021_22_4_a1,
     author = {I. M. Vinogradov},
     title = {Gaussian sums and their application to the proof of quadratic reciprocity law},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {7--87},
     publisher = {mathdoc},
     volume = {22},
     number = {4},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2021_22_4_a1/}
}
TY  - JOUR
AU  - I. M. Vinogradov
TI  - Gaussian sums and their application to the proof of quadratic reciprocity law
JO  - Čebyševskij sbornik
PY  - 2021
SP  - 7
EP  - 87
VL  - 22
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2021_22_4_a1/
LA  - ru
ID  - CHEB_2021_22_4_a1
ER  - 
%0 Journal Article
%A I. M. Vinogradov
%T Gaussian sums and their application to the proof of quadratic reciprocity law
%J Čebyševskij sbornik
%D 2021
%P 7-87
%V 22
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2021_22_4_a1/
%G ru
%F CHEB_2021_22_4_a1
I. M. Vinogradov. Gaussian sums and their application to the proof of quadratic reciprocity law. Čebyševskij sbornik, Tome 22 (2021) no. 4, pp. 7-87. http://geodesic.mathdoc.fr/item/CHEB_2021_22_4_a1/

[1] Uspenskii Ya.V., “Soobrazheniya o vozmozhno tselesoobraznom prepodavanii matematiki v proektiruemom institute inzhenerov zemelnykh uluchshenii. Predislovie, publikatsiya i kommentarii A.A. Sergeeva”, Istoriko-matematicheskie issledovaniya, 1999, no. 4(39), 114–123

[2] Ermolaeva N., “Uspenskii, Yakov Viktorovich”, Russkoe zarubezhe: Zolotaya kniga emigratsii. Pervaya tret XX veka. Entsiklopedicheskii biograficheskii slovar, ROSSPEN, M., 1997

[3] Karatsuba A.A., “I.M. Vinogradov i ego metod trigonometricheskikh summ”, Teoriya chisel i analiz, Sbornik statei. Trudy Mezhdunarodnoi konferentsii po teorii chisel, posvyaschennoi 100-letiyu so dnya rozhdeniya akademika I.M. Vinogradova, Tr. MIAN, 207, Nauka, M., 1994, 3–20

[4] Karatsuba A.A., “Ivan Matveevich Vinogradov (k devyanostoletiyu so dnya rozhdeniya)”, UMN, 36:6(222) (1981), 3–16 | MR | Zbl

[5] Delone B.N., Peterburgskaya shkola teorii chisel, Izd-vo AN SSSR, M.-L., 1947

[6] Karatsuba A.A., “Kratkii ocherk nauchnoi, nauchno-organizatsionnoi i pedagogicheskoi deyatelnosti”, Ivan Matveevich Vinogradov, Materialy k bibliografii uchenykh SSSR. Seriya matematiki, 14, Nauka, M., 1978, 7–16

[7] Vinogradov I.M., “Sur la distribution des residus et des non-residus des puissances”, Zhurn. fiz.-matem. ob-va pri Permskom un-te, 1 (1918), 94–98

[8] Chandrasekkharan K., Vvedenie v analiticheskuyu teoriyu chisel, Mir, M., 1974

[9] Berndt B.C., Evans R.J., “The determination of Gauss sums”, Bull. Amer. Math. Soc., 5:2 (1981), 107–129 | DOI | MR | Zbl

[10] Berndt B.C., Evans, R.J., Williams K.S., Gauss and Jacobi Sums, John Wiley Sons, Inc., 1998 | MR | Zbl

[11] Gauss K.F., “Summatio quarumdam serierum singularium”, Commentat. Soc. Regiae Sci. Gott. Recent, 1 (1811)

[12] Gauss K.F., Trudy po teorii chisel, Izd-vo AN SSSR, M., 1959

[13] Dirichlet L., “Üeber eine neue Anwendung bestimmter Integrate auf die Summation endlicher oder unendlicher Reihen”, Abh. K. Preuss. Akad. Wiss, 1835, 391–407

[14] Cauchy A., “Méthode simple et nouvelle pour la détermination complète des sommes alternées, formées avec les racines primitives des équations binômes”, C. R. Acad. Sci. Paris, 10 (1840), 560–572

[15] Gauss K.F., Werke, v. 2, Göttingen, 1863, 11–45

[16] Dirichlet G.L., Werke, v. 1, Berlin, 1889, 239–256

[17] Cauchy A., {ØE}uvres complètes d'Augustin Cauchy. I$^{\text{re}}$ Série, v. V, Paris, 1885, 152–166 | MR

[18] Fintengolts G.M., Kurs differentsialnogo i integralnogo ischisleniya, v. II, 6-e izd., Nauka, M., 1966