Ball's lemma as an exercise
Čebyševskij sbornik, Tome 22 (2021) no. 3, pp. 464-466
Cet article a éte moissonné depuis la source Math-Net.Ru
We suggest an extremely short proof of Ball's lemma by means of harmonic analysis only.
Keywords:
Ball's lemma, Hausdorff–Young inequality
Mots-clés : Fourier transform, Babenko–Beckner constant.
Mots-clés : Fourier transform, Babenko–Beckner constant.
@article{CHEB_2021_22_3_a30,
author = {E. Liflyand},
title = {Ball's lemma as an exercise},
journal = {\v{C}eby\v{s}evskij sbornik},
pages = {464--466},
year = {2021},
volume = {22},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CHEB_2021_22_3_a30/}
}
E. Liflyand. Ball's lemma as an exercise. Čebyševskij sbornik, Tome 22 (2021) no. 3, pp. 464-466. http://geodesic.mathdoc.fr/item/CHEB_2021_22_3_a30/
[1] K. I. Babenko, “An inequality in the theory of Fourier integral”, Izv. Akad. Nauk SSSR Ser. Mat., 25 (1961), 531–542 (Russian) | Zbl
[2] K. Ball, “Cube slicing in ${R}^n$”, Proc. Amer. Math. Soc., 97 (1986), 465–473 | MR | Zbl
[3] W. Beckner, “Inequalities in Fourier analysis”, Ann. Math., 102 (1975), 159–182 | DOI | MR | Zbl
[4] S. Bochner, Lectures on Fourier Integrals, Princeton Univ. Press, Princeton, N. J., 1959 | MR | Zbl
[5] B. Makarov, A. Podkorytov, Real Analysis: Measures, Integrals and Applications, Springer, 2013 | MR | Zbl