Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHEB_2021_22_3_a30, author = {E. Liflyand}, title = {Ball's lemma as an exercise}, journal = {\v{C}eby\v{s}evskij sbornik}, pages = {464--466}, publisher = {mathdoc}, volume = {22}, number = {3}, year = {2021}, language = {en}, url = {http://geodesic.mathdoc.fr/item/CHEB_2021_22_3_a30/} }
E. Liflyand. Ball's lemma as an exercise. Čebyševskij sbornik, Tome 22 (2021) no. 3, pp. 464-466. http://geodesic.mathdoc.fr/item/CHEB_2021_22_3_a30/
[1] K. I. Babenko, “An inequality in the theory of Fourier integral”, Izv. Akad. Nauk SSSR Ser. Mat., 25 (1961), 531–542 (Russian) | Zbl
[2] K. Ball, “Cube slicing in ${R}^n$”, Proc. Amer. Math. Soc., 97 (1986), 465–473 | MR | Zbl
[3] W. Beckner, “Inequalities in Fourier analysis”, Ann. Math., 102 (1975), 159–182 | DOI | MR | Zbl
[4] S. Bochner, Lectures on Fourier Integrals, Princeton Univ. Press, Princeton, N. J., 1959 | MR | Zbl
[5] B. Makarov, A. Podkorytov, Real Analysis: Measures, Integrals and Applications, Springer, 2013 | MR | Zbl