Finite groups with $OS$-propermutable subgroups
Čebyševskij sbornik, Tome 22 (2021) no. 3, pp. 457-463.

Voir la notice de l'article provenant de la source Math-Net.Ru

A subgroup $A$ of a group $G$ is called $OS$-propermutable in $G$ if there is a subgroup $B$ such that $G = N_G(A)B$, $AB$ is a subgroup of $G$ and the subgroup $A$ permutes with all Schmidt subgroups of $B$. In this situation, the subgroup $B$ is called $OS$-prosupplement to $A$ in $G$. In this paper, we proved the $p$-solubility of a finite group $G$ such that a Sylow $p$-subgroup of $G$ is $OS$-propermutable in $G$, where $p>5$.
Keywords: finite group, $p$-soluble group, $OS$-propermutable subgroup, Schmidt subgroup, seminormal subgroup.
@article{CHEB_2021_22_3_a29,
     author = {E. V. Zubei},
     title = {Finite groups with $OS$-propermutable subgroups},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {457--463},
     publisher = {mathdoc},
     volume = {22},
     number = {3},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2021_22_3_a29/}
}
TY  - JOUR
AU  - E. V. Zubei
TI  - Finite groups with $OS$-propermutable subgroups
JO  - Čebyševskij sbornik
PY  - 2021
SP  - 457
EP  - 463
VL  - 22
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2021_22_3_a29/
LA  - ru
ID  - CHEB_2021_22_3_a29
ER  - 
%0 Journal Article
%A E. V. Zubei
%T Finite groups with $OS$-propermutable subgroups
%J Čebyševskij sbornik
%D 2021
%P 457-463
%V 22
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2021_22_3_a29/
%G ru
%F CHEB_2021_22_3_a29
E. V. Zubei. Finite groups with $OS$-propermutable subgroups. Čebyševskij sbornik, Tome 22 (2021) no. 3, pp. 457-463. http://geodesic.mathdoc.fr/item/CHEB_2021_22_3_a29/

[1] Berkovich Ya. G., Palchik E. M., “O perestanovochnosti podgrupp konechnoi gruppy”, Sib. mat. zhurn., 8:4 (1967), 741–753

[2] Knyagina V. N., Monakhov V. S., “Konechnye gruppy s polunormalnymi podgruppami Shmidta”, Algebra i logika, 46:4 (2007), 448–458 | MR | Zbl

[3] Knyagina V. N., Monakhov V. S., “O perestanovochnosti maksimalnykh podgrupp s podgruppami Shmidta”, Tr. In-ta matematiki i mekhaniki UrO RAN, 17, no. 4, 2011, 126–133

[4] Knyagina V. N., Monakhov V. S., “O perestanovochnosti silovskikh podgrupp s podgruppami Shmidta”, Tr. IMM UrO RAN, 16, no. 3, 2010, 130–139

[5] Knyagina V. N., Monakhov V. S., “O perestanovochnosti $n$-maksimalnykh podgrupp s podgruppami Shmidta”, Tr. In-ta matematiki i mekhaniki UrO RAN, 18, no. 3, 2012, 125–130

[6] Knyagina V. N., Monakhov V. S., “O $\pi^\prime$-svoistvakh konechnoi gruppy, obladayuschei $\pi$-khollovoi podgruppoi”, Sib. matem. zhurn., 52:2 (2011), 297–309 | MR | Zbl

[7] Monakhov V. S., Vvedenie v teoriyu konechnykh grupp i ikh klassov, Vysheishaya shkola, Minsk, 2006

[8] Monakhov V. S., “Podgruppy Shmidta, ikh suschestvovanie i nekotorye prilozheniya”, Trudy Ukr. matem. kongressa 2001, Sektsiya No 1 (Kiev, 2002), 81–90

[9] Monakhov V. S., Zubei E. V., “O kompozitsionnykh faktorakh konechnoi gruppy s $OS$-polunormalnoi silovskoi podgruppoi”, Tr. In-ta matematiki NAN RB, 26:1 (2018), 90–94

[10] Monakhov V. S., Trofimuk A. A., “O sverkhrazreshimosti gruppy s polunormalnymi podgruppami”, Sibirskii matematicheskii zhurnal, 61:1 (2020), 148–159 | MR | Zbl

[11] Shmidt O. Yu., “Gruppy, vse podgruppy kotorykh spetsialnye”, Matem. sb., 31 (1924), 366–372

[12] Huppert B., Endliche Gruppen I, Berlin–Heidelberg–New York, 1967 | MR | Zbl

[13] Yi X., Skiba A. N., “On $S$-propermutable subgroups of finite groups”, Bull. Malays. Math. Sci. Soc., 38:2 (2015), 605–616 | DOI | MR | Zbl