Finite groups with $OS$-propermutable subgroups
Čebyševskij sbornik, Tome 22 (2021) no. 3, pp. 457-463

Voir la notice de l'article provenant de la source Math-Net.Ru

A subgroup $A$ of a group $G$ is called $OS$-propermutable in $G$ if there is a subgroup $B$ such that $G = N_G(A)B$, $AB$ is a subgroup of $G$ and the subgroup $A$ permutes with all Schmidt subgroups of $B$. In this situation, the subgroup $B$ is called $OS$-prosupplement to $A$ in $G$. In this paper, we proved the $p$-solubility of a finite group $G$ such that a Sylow $p$-subgroup of $G$ is $OS$-propermutable in $G$, where $p>5$.
Keywords: finite group, $p$-soluble group, $OS$-propermutable subgroup, Schmidt subgroup, seminormal subgroup.
@article{CHEB_2021_22_3_a29,
     author = {E. V. Zubei},
     title = {Finite groups with $OS$-propermutable subgroups},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {457--463},
     publisher = {mathdoc},
     volume = {22},
     number = {3},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2021_22_3_a29/}
}
TY  - JOUR
AU  - E. V. Zubei
TI  - Finite groups with $OS$-propermutable subgroups
JO  - Čebyševskij sbornik
PY  - 2021
SP  - 457
EP  - 463
VL  - 22
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2021_22_3_a29/
LA  - ru
ID  - CHEB_2021_22_3_a29
ER  - 
%0 Journal Article
%A E. V. Zubei
%T Finite groups with $OS$-propermutable subgroups
%J Čebyševskij sbornik
%D 2021
%P 457-463
%V 22
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2021_22_3_a29/
%G ru
%F CHEB_2021_22_3_a29
E. V. Zubei. Finite groups with $OS$-propermutable subgroups. Čebyševskij sbornik, Tome 22 (2021) no. 3, pp. 457-463. http://geodesic.mathdoc.fr/item/CHEB_2021_22_3_a29/