A remark on a lemma from Filippov's article on differential inclusions
Čebyševskij sbornik, Tome 22 (2021) no. 3, pp. 448-452.

Voir la notice de l'article provenant de la source Math-Net.Ru

The Filippov's article discusses a possible definition of the solution of differential equation with discontinuous right-hand side. The lemma on the structure of the set defining differential inclusion given by Filippov implies an equivalent solution definition, which allows us to expand possible domains and codomains of the function, that is in the right-hand side of the equation. In this paper we find a generalization of this lemma to the case of general topologic and measure spaces. Proofs of corresponding theorems are given here.
Keywords: differential inclusions, Filippov's regularization.
@article{CHEB_2021_22_3_a27,
     author = {E. E. Borisenko},
     title = {A remark on a lemma from {Filippov's} article on differential inclusions},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {448--452},
     publisher = {mathdoc},
     volume = {22},
     number = {3},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2021_22_3_a27/}
}
TY  - JOUR
AU  - E. E. Borisenko
TI  - A remark on a lemma from Filippov's article on differential inclusions
JO  - Čebyševskij sbornik
PY  - 2021
SP  - 448
EP  - 452
VL  - 22
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2021_22_3_a27/
LA  - ru
ID  - CHEB_2021_22_3_a27
ER  - 
%0 Journal Article
%A E. E. Borisenko
%T A remark on a lemma from Filippov's article on differential inclusions
%J Čebyševskij sbornik
%D 2021
%P 448-452
%V 22
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2021_22_3_a27/
%G ru
%F CHEB_2021_22_3_a27
E. E. Borisenko. A remark on a lemma from Filippov's article on differential inclusions. Čebyševskij sbornik, Tome 22 (2021) no. 3, pp. 448-452. http://geodesic.mathdoc.fr/item/CHEB_2021_22_3_a27/

[1] A. F. Filippov, “Differential equations with discontinuous right-hand side”, Math. col., 51(93):1 (1960), 99–128 | MR | Zbl

[2] A. F. Filippov, Differential equations with discontinuous right-hand side, Science. Main editorial office of physical and mathematical literature, M., 1985 | MR

[3] Stewart D.E., “Formulating Measure Differential Inclusions in Infinite Dimensions”, Set-Valued Analysis, 8 (2000), 273–293 | DOI | MR | Zbl

[4] A. A. Tolstonogov, “Differential inclusions in a Banach space with nonconvex right-hand side. Existence of solutions”, Sib. Math. Journal, 22:4 (1981), 182–198 | MR | Zbl

[5] P. S. Alexandrov, Introduction to set theory and general topology, Main edition of physical and mathematical literature of the publishing house “Nauka”, M., 1977, 368 pp.

[6] K. Kuratovskiy, Topology, v. 1, “Mir”, M., 1966

[7] A. Robertson, V. Robertson, Topological vector spaces, “Mir”, M., 1967 | MR