Problems on eigenvalues for ordinary differential equations of the second order with variable coefficients
Čebyševskij sbornik, Tome 22 (2021) no. 3, pp. 353-367.

Voir la notice de l'article provenant de la source Math-Net.Ru

In paper the linear homogeneous self-interfaced ordinary differential is considered Second-kind equation with the variable integrable factors depending on the numerical Parametre (input equation). The input equation Common decision is about accuracy to two Arbitrary constants by means of the integral formula, before the paper offered by the author. On the general The solution is superimposed two homogeneous conditions from which the system from two equations follows for Arbitrary constants. Demanding, that there was a nontrivial solution of an input equation, We receive the complicated nonlinear equation for numerical parametre (the spectral equation).
Keywords: differential equations of the second order, the equation with variable coefficients, a problem Sturm–Liuvill, the spectral equations.
@article{CHEB_2021_22_3_a20,
     author = {V. I. Gorbachev},
     title = {Problems on eigenvalues for ordinary differential equations of the second order with variable coefficients},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {353--367},
     publisher = {mathdoc},
     volume = {22},
     number = {3},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2021_22_3_a20/}
}
TY  - JOUR
AU  - V. I. Gorbachev
TI  - Problems on eigenvalues for ordinary differential equations of the second order with variable coefficients
JO  - Čebyševskij sbornik
PY  - 2021
SP  - 353
EP  - 367
VL  - 22
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2021_22_3_a20/
LA  - ru
ID  - CHEB_2021_22_3_a20
ER  - 
%0 Journal Article
%A V. I. Gorbachev
%T Problems on eigenvalues for ordinary differential equations of the second order with variable coefficients
%J Čebyševskij sbornik
%D 2021
%P 353-367
%V 22
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2021_22_3_a20/
%G ru
%F CHEB_2021_22_3_a20
V. I. Gorbachev. Problems on eigenvalues for ordinary differential equations of the second order with variable coefficients. Čebyševskij sbornik, Tome 22 (2021) no. 3, pp. 353-367. http://geodesic.mathdoc.fr/item/CHEB_2021_22_3_a20/

[1] Kolatts L., Zadachi na sobstvennye znacheniya, Nauka, M., 1968, 503 pp.

[2] Naimark M. A., Lineinye differentsialnye operatory, Nauka, M., 1969, 526 pp. | MR

[3] Koo-Od, Matematicheskaya entsiklopediya, v. 3, ed. Vinogradov I. M., Sovetskaya entsiklopediya, M., 1982, 1183 pp. | MR

[4] Filchakov P. F., Spravochnik po vysshei matematike, Naukova Dumka, Kiev, 1974, 744 pp. | MR

[5] Koshlyakov N. S., Gliner E. B., Smirnov M. M., Uravneniya v chastnykh proizvodnykh matematicheskoi fiziki, Vysshaya shkola, M., 1970, 710 pp.

[6] Kamke N., Spravochnik po obyknovennym differentsialnym uravneniyam, Nauka, M., 1971, 576 pp.

[7] Sadovnichii V. A., Sultanaev Ya. T., Akhtyamov A. M., Obratnye zadachi Shturma-Liuvillya s neraspadayuschimisya kraevymi usloviyami, Izd-vo MGU, M., 1984, 182 pp. | MR

[8] Tikhonov A. N., Vasileva A. B., Sveshnikov A. G., Differentsialnye uravneniya, Kurs vysshei matematiki i matematicheskoi fiziki, Fizmatlit, M., 2005, 254 pp.

[9] Gorbachev V. I., “About one approach to a solution of linear differential equations with variable coefficients”, Lobachevskii Journal of Mathematics, 40:7 (2019), 969–980 | DOI | MR | Zbl

[10] Gorbachev V. I., “Primenenie integralnykh formul dlya resheniya obyknovennykh differentsialnykh uravnenii vtorogo poryadka s peremennymi koeffitsientami”, Chebyshevckii sbornik, 20:4, 108–123 | MR | Zbl

[11] Lomakin V. A., Teoriya uprugosti neodnorodnykh tel, Izd-vo MGU, M., 1976, 367 pp.

[12] Naife A. Kh., Metody vozmuschenii, Mir, M., 1976, 456 pp.

[13] Bakhvalov N. S., Panasenko G. P., Osrednennie protsessov v periodicheskikh sredakh, Nauka, M., 1984, 352 pp. | MR

[14] Pobedrya B. E., Mekhanika kompozitsionnykh materialov, Izd-vo MGU, M., 1984, 336 pp.

[15] Kolmogorov A. N., Fomin S. V., Elementy teorii funktsii i funktsionalnogo analiza, Nauka, M., 1972, 496 pp. | MR

[16] Kech V., Teodoresku P., Vvedenie v teoriyu obobschennykh funktsii s prilozheniyami v tekhnike, Mir, M., 1978, 518 pp. | MR

[17] Matveev N. M., Sbornik zadach i uprazhnenii po obyknovennym differentsialnym uravneniyam, Rosvuzizdat, M., 1962, 292 pp. | MR

[18] Kampe de Fere Zh., Kempbell R., Peto G., Fogel T., Funktsii matematicheskoi fiziki. Spravochnoe rukovodstvo, Perevod s frantsuzskogo N.Ya. Vilenkina, Nauka, M., 1963, 103 pp.

[19] Suetin P. K., Klassicheskie ortogonalnye mnogochleny, Nauka: glavnaya redaktsiya fiziko-matematicheskoi literatury, M., 1979, 416 pp.

[20] Yanke E., Emde F., Lesh F., Spetsialnye funktsii, Nauka, M., 1964, 344 pp.