$\bar \omega$-fibered formations of finite groups
Čebyševskij sbornik, Tome 22 (2021) no. 3, pp. 232-244.

Voir la notice de l'article provenant de la source Math-Net.Ru

Only finite groups are considered. The work is devoted to the study of formations which are classes of groups that are closed with respect to homomorphic images and subdirect products. For a non-empty set $\omega$ of primes V.A. Vedernikov, using two types of functions, defined $\omega$-fibered formations of finite groups. Developing this functional approach, in the paper for an arbitrary partition $\bar\omega$ of the set $\omega$ we constructed $\bar\omega$-fibered formations. The construction uses the $\sigma$-concept of A.N. Skiba for the study of finite groups and their classes, where $\sigma$ is an arbitrary partition of the set $\mathbb P$ of all primes. We gave examples of $\bar\omega$-fibered formations, established their properties (existence of $\bar\omega$-satellites of different types; sufficient conditions for a group $G$ to belong to an $\bar\omega$-fibered formation; relationship with $\omega$-fibered and $\mathbb P_{\sigma}$-fibered formations).
Keywords: finite group, class of groups, formation, $\bar\omega$-fibered formation, direction of an $\bar \omega$-fibered formation.
@article{CHEB_2021_22_3_a14,
     author = {M. M. Sorokina and A. A. Gorepekina},
     title = {$\bar \omega$-fibered formations of finite groups},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {232--244},
     publisher = {mathdoc},
     volume = {22},
     number = {3},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2021_22_3_a14/}
}
TY  - JOUR
AU  - M. M. Sorokina
AU  - A. A. Gorepekina
TI  - $\bar \omega$-fibered formations of finite groups
JO  - Čebyševskij sbornik
PY  - 2021
SP  - 232
EP  - 244
VL  - 22
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2021_22_3_a14/
LA  - ru
ID  - CHEB_2021_22_3_a14
ER  - 
%0 Journal Article
%A M. M. Sorokina
%A A. A. Gorepekina
%T $\bar \omega$-fibered formations of finite groups
%J Čebyševskij sbornik
%D 2021
%P 232-244
%V 22
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2021_22_3_a14/
%G ru
%F CHEB_2021_22_3_a14
M. M. Sorokina; A. A. Gorepekina. $\bar \omega$-fibered formations of finite groups. Čebyševskij sbornik, Tome 22 (2021) no. 3, pp. 232-244. http://geodesic.mathdoc.fr/item/CHEB_2021_22_3_a14/

[1] Chunikhin S. A., Podgruppy konechnykh grupp, Nauka i tekhnika, Minsk, 1964, 158 pp. | MR

[2] Shemetkov L. A., “Faktorizatsii neprostykh konechnykh grupp”, Algebra i logika, 15:6 (1976), 684–715 | MR | Zbl

[3] Shemetkov L. A., Formatsii konechnykh grupp, Nauka, M., 1978, 272 pp. | MR

[4] Skiba A. N., O $\sigma$-svoistvakh konechnykh grupp, Preprint, izd-vo Gomelskogo gosudarstvennogo universiteta im. F. Skoriny, 2013

[5] Skiba A. N., “On $\sigma$-properties of finite groups I”, Problems of Physics, Mathematics and Technics, 2014, no. 4 (21), 89–96 | MR | Zbl

[6] Skiba A. N., “On $\sigma$-properties of finite groups II”, Problems of Physics, Mathematics and Technics, 2015, no. 3(24), 70–83 | MR | Zbl

[7] Skiba A. N., “On $\sigma$-properties of finite groups III”, Problems of Physics, Mathematics and Technics, 2016, no. 1(26), 52–62 | MR | Zbl

[8] Skiba A. N., “On $\sigma$-subnormal and $\sigma$-permutable subgroups of finite groups”, Journal of Algebra, 436 (2015), 1–16 | DOI | MR | Zbl

[9] Skiba A. N., O $\sigma$-lokalnykh formatsiyakh konechnykh grupp, Preprint, izd-vo Gomelskogo gosudarstvennogo universiteta im. F. Skoriny, 2017

[10] Skiba A. N., “On one generalization of the local formations”, Problems of Physics, Mathematics and Technics, 2018, no. 1(34), 79–82 | MR | Zbl

[11] Skiba A. N., Algebra formatsii, Belaruskaya navuka, Mn., 1997, 240 pp. | MR

[12] Doerk K., Nawkes T., Finite soluble groups, Walter de Gruyter, Berlin–New Jork, 1992, 891 pp. | MR

[13] Chi Z., Safonov V. G., Skiba A. N., “On one application of the theory of $n$-multiply $\sigma$-local formations of finite groups”, Problems of Physics, Mathematics and Technics, 2018, no. 2(35), 85–88 | MR | Zbl

[14] Chi Z., Safonov V. G., Skiba A. N., “On $n$-multiply $\sigma$-local formations of finite groups”, Comm. Algebra, 47:3 (2019), 1–10 | DOI | MR

[15] Safonov V. G., Safonova I. N., Skiba A. N., “On one generalization of $\sigma$-local and Baer-local formations”, Problems of Physics, Mathematics and Technics, 2019, no. 4(41), 65–69 | MR | Zbl

[16] Skiba A. N., Shemetkov L. A., “Kratno $\omega$-lokalnye formatsii i klassy Fittinga konechnykh grupp”, Matem. trudy, 2:2 (1999), 114–147 | MR | Zbl

[17] Vorobev N. N., Algebra klassov konechnykh grupp, VGU imeni P. M. Masherova, Vitebsk, 2012, 322 pp.

[18] Vedernikov V. A., “O novykh tipakh $\omega$-veernykh formatsii konechnykh grupp”, Ukrainskii matematichnyi kongress – 2001, Sektsiya 1, Pratsi, Kiiv, 2002, 36–45 | MR

[19] Vedernikov V. A., Sorokina M. M., “$\omega$-veernye formatsii i klassy Fittinga konechnykh grupp”, Matematicheskie zametki, 71:1 (2002), 43–60 | MR | Zbl