Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHEB_2021_22_2_a6, author = {A. A. Zhukova and A. V. Shutov}, title = {On {Gelfond-type} problem for generalized {Zeckendorf} representations}, journal = {\v{C}eby\v{s}evskij sbornik}, pages = {104--120}, publisher = {mathdoc}, volume = {22}, number = {2}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CHEB_2021_22_2_a6/} }
A. A. Zhukova; A. V. Shutov. On Gelfond-type problem for generalized Zeckendorf representations. Čebyševskij sbornik, Tome 22 (2021) no. 2, pp. 104-120. http://geodesic.mathdoc.fr/item/CHEB_2021_22_2_a6/
[1] Dumont J.-M., Thomas A., “Systemes de numeration et fonctions fractales relatifs aux substitutions”, Theoretical computer science, 65:2 (1989), 153–169 | DOI | MR | Zbl
[2] Dumont J.-M., Thomas A., “Gaussian asymptotic properties of the sum-of-digits function”, J. Number Theory, 62 (1997), 19–38 | DOI | MR | Zbl
[3] Gelfond A. O., “Sur les nombres qui ont des propriétés additives et multiplicatives données”, Acta Aithmetica, 13 (1968), 259–265 | DOI | MR | Zbl
[4] Zeckendorf E., “Representation des nombres naturels par une somme de nombres de Fibonacci ou de nombres de Lucas”, Bull. Soc. R. Sci. Liege, 41 (1972), 179–182 | MR | Zbl
[5] Drmota M., Skałba M., “The Parity of the Zeckendorf Sum-of-Digits-Function”, Manuscripta mathematica, 101 (2000), 361–383 | DOI | MR | Zbl
[6] Drmota M., Gajdosik J., “The Parity of the Sum-of-Digits-Function of Generalized Zeckendorf Representations”, Fibonacci Quarterly, 36:1 (1998), 3–19 | MR | Zbl
[7] Khinchin A. Ya., “Zur metrischen Kettenbruchtheorie”, Compositio Matlzematica, 3:2 (1936), 275–285 | MR
[8] Lamberger M., Thuswaldner J. W., “Distribution properties of digital expansions arising from linear recurrences”, Mathematica Slovaca, 53:1 (2003), 1–20 | MR | Zbl
[9] Madritsch M. G., Thuswaldner J. M., The level of distribution of the sum-of-digits function of linear recurrence number systems, Cornell University, 2019, arXiv: 1909.08499
[10] Mauduit C., Rivat J., “Sur un problème de Gelfond: la somme des chiffres des nombres premiers”, Annals of Mathematics, 171:3 (2010), 1591–1646 | DOI | MR | Zbl
[11] Ostrowski V. A., “Bemerkungen zur Theorie der diophantischen Approximationen”, Abh. Math. Semin. Hamburg Univ., 1 (1922), 77–98 | DOI | MR
[12] Parry W., “On the $\beta$-expansion of real numbers”, Acta Math. Acad. Sci. Hung., 11 (1960), 401–416 | DOI | MR | Zbl
[13] Shutov A. V., “On sum of digits of the Zeckendorf representations of two consecutive numbers”, Fibonacci quarterly, 2020 (accepted) | MR
[14] Karatsuba A. A., Novak B., “Arifmeticheskie zadachi s chislami spetsialnogo vida”, Matem. zametki, 66:2 (1999), 314–317 | DOI
[15] Naumenko A. P., “O chisle reshenii nekotorykh diofantovykh uravnenii v naturalnykh chislakh s zadannymi svoistvami dvoichnykh razlozhenii”, Chebyshevskii sb., 12:1 (2011), 140–157 | MR | Zbl
[16] Stenli R., Perechislitelnaya kombinatorika, v. 1, Mir, M., 1990
[17] Eminyan K. M., “Ob odnoi binarnoi zadache”, Matem. zametki, 60:4 (1996), 634–637 | DOI | MR | Zbl
[18] Eminyan K. M., “O predstavlenii chisel s zadannymi svoistvami dvoichnogo razlozheniya summami dvukh kvadratov”, Tr. MIAN, 207, Nauka, M., 1994, 377–382
[19] Eminyan K. M., “O srednikh znacheniyakh funktsii $\tau_k(n)$ v nekotorykh posledovatelnostyakh naturalnykh chisel”, Matem. zametki, 90:3 (2011), 439–447 | DOI | MR | Zbl