On Gelfond-type problem for generalized Zeckendorf representations
Čebyševskij sbornik, Tome 22 (2021) no. 2, pp. 104-120.

Voir la notice de l'article provenant de la source Math-Net.Ru

Gelfond proved that for coprime $b-1$ and $d$ sums of digits of $b$-ary expressions of natural numbers are uniformly distributed on arithmetic progressions with the common difference $d$. Later, similar result was proved for the representations of natural numbers based on linear recurrent sequences. We consider the remainder term of the corresponding asymptotic formula and study the dichotomy between the logarithmic and power estimates of the remainder term. In the case $d=2$, we obtain some sufficient condition for the validity of the logarithmic estimate. Using them, we show that the logarithmic estimate holds for expansions based on all second-order linear recurrenct sequences and on infinite family of third-order sequences. Also we construct an example of the linear reccurent sequence of an arbitrary order with such property. On the other hand, we give an example of a third-order linear recurrent sequence for which the logarithmic estimate does not hold. We also show that for $d=3$ the logarithmic estimate does not hold even in the simplest case of the expansions based on Fibonacci numbers. In addition, we consider the representations of natural numbers based on the denominators of partial convergents of the continued fraction expansions of irrational numbers. In this case, we prove the uniformity of the distribution of sums of digits over arithmetic progressions with the common difference $2$ with the logarithmic remainder term.
Keywords: Fibonacci numers, generalized Zeckendorf representations, linear reccurent sequences, continued fractions, sums of digints, Gelfond problem.
@article{CHEB_2021_22_2_a6,
     author = {A. A. Zhukova and A. V. Shutov},
     title = {On {Gelfond-type} problem for generalized {Zeckendorf} representations},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {104--120},
     publisher = {mathdoc},
     volume = {22},
     number = {2},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2021_22_2_a6/}
}
TY  - JOUR
AU  - A. A. Zhukova
AU  - A. V. Shutov
TI  - On Gelfond-type problem for generalized Zeckendorf representations
JO  - Čebyševskij sbornik
PY  - 2021
SP  - 104
EP  - 120
VL  - 22
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2021_22_2_a6/
LA  - ru
ID  - CHEB_2021_22_2_a6
ER  - 
%0 Journal Article
%A A. A. Zhukova
%A A. V. Shutov
%T On Gelfond-type problem for generalized Zeckendorf representations
%J Čebyševskij sbornik
%D 2021
%P 104-120
%V 22
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2021_22_2_a6/
%G ru
%F CHEB_2021_22_2_a6
A. A. Zhukova; A. V. Shutov. On Gelfond-type problem for generalized Zeckendorf representations. Čebyševskij sbornik, Tome 22 (2021) no. 2, pp. 104-120. http://geodesic.mathdoc.fr/item/CHEB_2021_22_2_a6/

[1] Dumont J.-M., Thomas A., “Systemes de numeration et fonctions fractales relatifs aux substitutions”, Theoretical computer science, 65:2 (1989), 153–169 | DOI | MR | Zbl

[2] Dumont J.-M., Thomas A., “Gaussian asymptotic properties of the sum-of-digits function”, J. Number Theory, 62 (1997), 19–38 | DOI | MR | Zbl

[3] Gelfond A. O., “Sur les nombres qui ont des propriétés additives et multiplicatives données”, Acta Aithmetica, 13 (1968), 259–265 | DOI | MR | Zbl

[4] Zeckendorf E., “Representation des nombres naturels par une somme de nombres de Fibonacci ou de nombres de Lucas”, Bull. Soc. R. Sci. Liege, 41 (1972), 179–182 | MR | Zbl

[5] Drmota M., Skałba M., “The Parity of the Zeckendorf Sum-of-Digits-Function”, Manuscripta mathematica, 101 (2000), 361–383 | DOI | MR | Zbl

[6] Drmota M., Gajdosik J., “The Parity of the Sum-of-Digits-Function of Generalized Zeckendorf Representations”, Fibonacci Quarterly, 36:1 (1998), 3–19 | MR | Zbl

[7] Khinchin A. Ya., “Zur metrischen Kettenbruchtheorie”, Compositio Matlzematica, 3:2 (1936), 275–285 | MR

[8] Lamberger M., Thuswaldner J. W., “Distribution properties of digital expansions arising from linear recurrences”, Mathematica Slovaca, 53:1 (2003), 1–20 | MR | Zbl

[9] Madritsch M. G., Thuswaldner J. M., The level of distribution of the sum-of-digits function of linear recurrence number systems, Cornell University, 2019, arXiv: 1909.08499

[10] Mauduit C., Rivat J., “Sur un problème de Gelfond: la somme des chiffres des nombres premiers”, Annals of Mathematics, 171:3 (2010), 1591–1646 | DOI | MR | Zbl

[11] Ostrowski V. A., “Bemerkungen zur Theorie der diophantischen Approximationen”, Abh. Math. Semin. Hamburg Univ., 1 (1922), 77–98 | DOI | MR

[12] Parry W., “On the $\beta$-expansion of real numbers”, Acta Math. Acad. Sci. Hung., 11 (1960), 401–416 | DOI | MR | Zbl

[13] Shutov A. V., “On sum of digits of the Zeckendorf representations of two consecutive numbers”, Fibonacci quarterly, 2020 (accepted) | MR

[14] Karatsuba A. A., Novak B., “Arifmeticheskie zadachi s chislami spetsialnogo vida”, Matem. zametki, 66:2 (1999), 314–317 | DOI

[15] Naumenko A. P., “O chisle reshenii nekotorykh diofantovykh uravnenii v naturalnykh chislakh s zadannymi svoistvami dvoichnykh razlozhenii”, Chebyshevskii sb., 12:1 (2011), 140–157 | MR | Zbl

[16] Stenli R., Perechislitelnaya kombinatorika, v. 1, Mir, M., 1990

[17] Eminyan K. M., “Ob odnoi binarnoi zadache”, Matem. zametki, 60:4 (1996), 634–637 | DOI | MR | Zbl

[18] Eminyan K. M., “O predstavlenii chisel s zadannymi svoistvami dvoichnogo razlozheniya summami dvukh kvadratov”, Tr. MIAN, 207, Nauka, M., 1994, 377–382

[19] Eminyan K. M., “O srednikh znacheniyakh funktsii $\tau_k(n)$ v nekotorykh posledovatelnostyakh naturalnykh chisel”, Matem. zametki, 90:3 (2011), 439–447 | DOI | MR | Zbl