One application on hypergeometic series and values of $g$-adic functions algebraic independence investigation methods
Čebyševskij sbornik, Tome 22 (2021) no. 2, pp. 528-535

Voir la notice de l'article provenant de la source Math-Net.Ru

The article takes a look at transcendence and algebraic independence problems, introduces statements and proofs of theorems for some kinds of elements from direct product of $p$-adic fields and polynomial estimation theorem. Let $\mathbb{Q}_p$ be the $p$-adic completion of $\mathbb{Q}$, $\Omega_{p}$ be the completion of the algebraic closure of $\mathbb{Q}_p$, $g=p_1p_2\ldots p_n$ be a composition of separate prime numbers, $\mathbb{Q}_g$ be the $g$-adic completion of $\mathbb{Q}$, in other words $\mathbb{Q}_{p_1}\oplus\ldots\oplus\mathbb{Q}_{p_n}$. The ring $\Omega_g\cong\Omega_{p_1}\oplus\ldots\oplus\Omega_{p_n}$, a subring $\mathbb{Q}_g$, transcendence and algebraic independence over $\mathbb{Q}_g$ are under consideration. Also, hypergeometric series $$f(z)=\sum\limits_{j=0}^{\infty}\frac{(\gamma_1)_j\ldots(\gamma_r)_j}{(\beta_1)_j\ldots(\beta_s)_j}(zt)^{tj},$$ and their formal derivatives are under consideration. Sufficient conditions are obtained under which the values of the series $f(\alpha)$ and formal derivatives satisfy global relation of algebraic independence, if $\alpha=\sum\limits_{j=0}^{\infty}a_{j}g^{r_{j}}$, where $a_{j}\in \mathbb Z_g,$ and non-negative rationals $r_{j}$ increase strictly unbounded.
Keywords: $p$-adic numbers, $g$-adic numbers, $f$-series, transcendence, algebraic independence.
@article{CHEB_2021_22_2_a34,
     author = {A. S. Samsonov},
     title = {One application on hypergeometic series and values of $g$-adic functions algebraic independence investigation methods},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {528--535},
     publisher = {mathdoc},
     volume = {22},
     number = {2},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2021_22_2_a34/}
}
TY  - JOUR
AU  - A. S. Samsonov
TI  - One application on hypergeometic series and values of $g$-adic functions algebraic independence investigation methods
JO  - Čebyševskij sbornik
PY  - 2021
SP  - 528
EP  - 535
VL  - 22
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2021_22_2_a34/
LA  - ru
ID  - CHEB_2021_22_2_a34
ER  - 
%0 Journal Article
%A A. S. Samsonov
%T One application on hypergeometic series and values of $g$-adic functions algebraic independence investigation methods
%J Čebyševskij sbornik
%D 2021
%P 528-535
%V 22
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2021_22_2_a34/
%G ru
%F CHEB_2021_22_2_a34
A. S. Samsonov. One application on hypergeometic series and values of $g$-adic functions algebraic independence investigation methods. Čebyševskij sbornik, Tome 22 (2021) no. 2, pp. 528-535. http://geodesic.mathdoc.fr/item/CHEB_2021_22_2_a34/