Arithmetic properties of the values some hypergeometric $F$-series
Čebyševskij sbornik, Tome 22 (2021) no. 2, pp. 519-527.

Voir la notice de l'article provenant de la source Math-Net.Ru

Generalized hypergeometric series are of the form \begin{equation} f(z)=\sum_{n=0}^{\infty}\dfrac{(a_1)_n\ldots(a_l)_n}{(b_1)_n\ldots(b_m)_n}z^{n} \end{equation} If $l$ and if the parameters are rational, they are closely related to Siegel's $E$-functions. If $l=m$ and if the parameters are rational, they are $G$-functions. For $l>m$ and if the parameters are rational, they are $F$-series. The arithmetic properties values of generalized hypergeometric series is an actual problem with a long history. We shall only mention Siegel C. L., Shidlovskii A. B., Salikhov V. Kh., Beukers F., Brownawell W. D., Heckman G., Galochkin A. I., Oleinikov V. A., Ivankov P. L., Gorelov V. A., Chirskii V. G., Zudilin W., Matala–Aho T. etc. We consider the so–called $F$-series. Chirskii V.G. proved the infinitу algebraic independence of the corresponding values. Here we obtain lower estimates of polynomials and linear forms in the values of these series and their derivatives in a concrete $p$-adic field.
Keywords: $F$-series, estimates linear forms and polynomials, $p$-adic numbers.
@article{CHEB_2021_22_2_a33,
     author = {A. Kh. Munos Vaskes},
     title = {Arithmetic properties of the values some hypergeometric $F$-series},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {519--527},
     publisher = {mathdoc},
     volume = {22},
     number = {2},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2021_22_2_a33/}
}
TY  - JOUR
AU  - A. Kh. Munos Vaskes
TI  - Arithmetic properties of the values some hypergeometric $F$-series
JO  - Čebyševskij sbornik
PY  - 2021
SP  - 519
EP  - 527
VL  - 22
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2021_22_2_a33/
LA  - ru
ID  - CHEB_2021_22_2_a33
ER  - 
%0 Journal Article
%A A. Kh. Munos Vaskes
%T Arithmetic properties of the values some hypergeometric $F$-series
%J Čebyševskij sbornik
%D 2021
%P 519-527
%V 22
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2021_22_2_a33/
%G ru
%F CHEB_2021_22_2_a33
A. Kh. Munos Vaskes. Arithmetic properties of the values some hypergeometric $F$-series. Čebyševskij sbornik, Tome 22 (2021) no. 2, pp. 519-527. http://geodesic.mathdoc.fr/item/CHEB_2021_22_2_a33/

[1] Galochkin A. I., “O neuluchshaemykh po vysote otsenkakh nekotorykh lineinykh form”, Mat. sb., 124(166):3(7) (1984), 416–430 | MR | Zbl

[2] Galochkin A. I., “Otsenki snizu mnogochlenov ot znachenii analiticheskikh funktsii odnogo klassa”, Mat. sb., 95(137):3(11) (1974), 396–417 | Zbl

[3] Munos Vaskes A. Kh., “Otsenki snizu mnogochlenov i lineinykh form ot znachenii $F$ – ryadov”, Chebyshevckii sbornik, 21:3 (2020) | Zbl

[4] Nesterenko Yu. V., “Ob algebraicheskoi nezavisimosti znachenii $E$ – funktsii, udovletvoryayuschikh lineinym neodnorodnym differentsialnym uravneniyam”, Matem. zametki, 5:5 (1969), 587–598 | Zbl

[5] Oleinikov V. A., “O transtsendentnosti i algebraicheskoi nezavisimosti znachenii nekotorykh tselykh funktsii”, Izv. AN SSSR. Ser. mat., 32:1 (1968), 63–92 | MR

[6] Salikhov V. Kh., “Kriterii algebraicheskoi nezavisimosti znachenii odnogo klassa gipergeometricheskikh $E$ – funktsii”, Mat. sb., 181:2 (1990), 189–211

[7] Salikhov V. Kh., “Neprivodimost gipergeometricheskikh uravnenii i algebraicheskaya nezavismost znachenii $E$ – funktsii”, Acta Arith., 53 (1990), 453–471 | DOI | MR | Zbl

[8] Salikhov V. Kh., “Ob algebraicheskoi nezavisimosti znachenii gipergeometricheskikh $E$ – funktsii”, DAN SSSR, 307:2 (1989), 284–287

[9] Salikhov V. Kh., “Formalnye resheniya lineinykh differentsialnykh uravnenii i ikh primenenie v teorii transtsendentnykh chisel”, Tr. Mosk. mat. o-va, 51 (1988), 223–256 | Zbl

[10] Chirskii V. G., “Arifmeticheskie svoistva obobschennykh gipergeometricheskikh $F$ – ryadov”, Doklady Akademii nauk, 483:3 (2018), 257–259

[11] Chirskii V. G., “Arifmeticheskie svoistva poliadicheskikh ryadov s periodicheskimi koeffitsientami”, Doklady Akademii nauk, matematika, 439:6 (2014), 677–679 | DOI

[12] Chirskii V. G., “Arifmeticheskie svoistva poliadicheskikh ryadov s periodicheskimi koeffitsientami”, Izvestiya RAN. Seriya matematicheskaya, 81:2 (2017), 215–232 | DOI | MR | Zbl

[13] Chirskii V. G., “Arifmeticheskie svoistva poliadicheskikh chisel”, Chebyshevskii sbornik, 16:1 (2015), 254–264 | MR | Zbl

[14] Chirskii V. G., “Lineinaya nezavisimost $p$ – adicheskikh znachenii nekotorykh $q$ – bazisnykh gipergeometricheskikh ryadov”, Fund. i prikl. matem., 5:2 (1999), 619–625 | MR | Zbl

[15] Chirskii V. G., “O globalnykh sootnosheniyakh”, Mat. zametki, 48:2 (1990), 123–127 | MR | Zbl

[16] Chirskii V. G., “Ob arifmeticheskikh svoistvakh obobschennykh gipergeometricheskikh ryadov s irratsionalnymi parametrami”, Izvestiya RAN. Seriya matematicheskaya, 78:6 (2014), 193–210 | DOI | MR | Zbl

[17] Chirskii V. G., “Ob arifmeticheskikh svoistvakh ryada Eilera”, Vestnik Moskovskogo Universiteta. Seriya 1: Matematika. Mekhanika, 2015, no. 1, 59–61 | MR | Zbl

[18] Shidlovskii A. B., Transtsendentnye chisla, Nauka, M., 1987

[19] André Y., Séries Gevrey de type arithmétique, Inst. Math., Jussieu

[20] Bertrand D., Chirskii V. G., Yebbou Y., “Effective estimates for global relations on Euler-type series”, Ann. Fac. Sci. Toulouse, XIII:2 (2004), 241–260 | DOI | MR | Zbl

[21] Bombieri E., “On $G$-functions”, Recent Progress in Analytic Number Theory, v. 2, Academic Press, London, 1981, 1–68 | MR

[22] Chirskii V. G., “Arithmetic properties of Generalized Hypergeometric $F$ – Series”, Russian Journal of Mathematical Physics, 27:2 (2020), 175–184 | DOI | MR | Zbl

[23] Chirskii V. G., “Product formula, global relations and polyadic numbers”, Russian Journal of Mathematical Physics, 26:3 (2019), 286–305 | DOI | MR | Zbl

[24] Matala–Aho T., Zudilin W., “Euler factorial series and global relations”, J. Number Theory, 186 (2018), 202–210 | DOI | MR | Zbl