Arithmetic properties of the values some hypergeometric $F$-series
Čebyševskij sbornik, Tome 22 (2021) no. 2, pp. 519-527

Voir la notice de l'article provenant de la source Math-Net.Ru

Generalized hypergeometric series are of the form \begin{equation} f(z)=\sum_{n=0}^{\infty}\dfrac{(a_1)_n\ldots(a_l)_n}{(b_1)_n\ldots(b_m)_n}z^{n} \end{equation} If $l$ and if the parameters are rational, they are closely related to Siegel's $E$-functions. If $l=m$ and if the parameters are rational, they are $G$-functions. For $l>m$ and if the parameters are rational, they are $F$-series. The arithmetic properties values of generalized hypergeometric series is an actual problem with a long history. We shall only mention Siegel C. L., Shidlovskii A. B., Salikhov V. Kh., Beukers F., Brownawell W. D., Heckman G., Galochkin A. I., Oleinikov V. A., Ivankov P. L., Gorelov V. A., Chirskii V. G., Zudilin W., Matala–Aho T. etc. We consider the so–called $F$-series. Chirskii V.G. proved the infinitу algebraic independence of the corresponding values. Here we obtain lower estimates of polynomials and linear forms in the values of these series and their derivatives in a concrete $p$-adic field.
Keywords: $F$-series, estimates linear forms and polynomials, $p$-adic numbers.
@article{CHEB_2021_22_2_a33,
     author = {A. Kh. Munos Vaskes},
     title = {Arithmetic properties of the values some hypergeometric $F$-series},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {519--527},
     publisher = {mathdoc},
     volume = {22},
     number = {2},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2021_22_2_a33/}
}
TY  - JOUR
AU  - A. Kh. Munos Vaskes
TI  - Arithmetic properties of the values some hypergeometric $F$-series
JO  - Čebyševskij sbornik
PY  - 2021
SP  - 519
EP  - 527
VL  - 22
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2021_22_2_a33/
LA  - ru
ID  - CHEB_2021_22_2_a33
ER  - 
%0 Journal Article
%A A. Kh. Munos Vaskes
%T Arithmetic properties of the values some hypergeometric $F$-series
%J Čebyševskij sbornik
%D 2021
%P 519-527
%V 22
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2021_22_2_a33/
%G ru
%F CHEB_2021_22_2_a33
A. Kh. Munos Vaskes. Arithmetic properties of the values some hypergeometric $F$-series. Čebyševskij sbornik, Tome 22 (2021) no. 2, pp. 519-527. http://geodesic.mathdoc.fr/item/CHEB_2021_22_2_a33/