Computer simulation of the stimulation of electromagnetic vibrations of an open plasma resonator
Čebyševskij sbornik, Tome 22 (2021) no. 2, pp. 402-416.

Voir la notice de l'article provenant de la source Math-Net.Ru

In calculating microwaves – amplifiers and generators based on the emission of highly relativistic electronic beams in limited plasma, you have to face a number of difficulties, one of which is the correct setting of radiation conditions. Since there is no one-size-fits-all algorithm to overcome these challenges, you have to use a variety of simplistic assumptions and corresponding models. For example, plasma generators typically assumed that the width of the spectrum of vibrations generated was small and the central frequency corresponded to the frequency of accurate Cherenkov resonance. However, these assumptions were justified only for beams with currents of smaller maximum vacuum current. It was for such beams, using the method slowly – changing amplitude and introducing a constant ratio of plasma wave reflection from the radiating mouthpiece, it was possible to create a non-stationary theory of plasma microwave – a generator. However, the possibility of applying this approach is very limited, as it does not use a strict form of radiation conditions. This is due to the fact that known boundary conditions of radiation were developed to describe only established vibrational processes. Currently, there are various options for generalizing these boundary conditions for a non-stationary case, but all of them are not without certain shortcomings. One of the most successful variants of the radiation boundary conditions for the complete non-stationary system of Maxwell–Vlasova is, in our view, the unsteady analogue of the partial radiation conditions. However, the practical implementation of these conditions also faces serious mathematical difficulties. The question of the feasibity and effectiveness of these radiation conditions in relation to a specific electrodynamic system is being considered in this paper.
Keywords: microwave plasma electronics, non-stationary border radiation conditions.
@article{CHEB_2021_22_2_a24,
     author = {Yu. V. Bobylev and T. G. Meshcheryakova and V. A. Panin},
     title = {Computer simulation of the stimulation of electromagnetic vibrations of an open plasma resonator},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {402--416},
     publisher = {mathdoc},
     volume = {22},
     number = {2},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2021_22_2_a24/}
}
TY  - JOUR
AU  - Yu. V. Bobylev
AU  - T. G. Meshcheryakova
AU  - V. A. Panin
TI  - Computer simulation of the stimulation of electromagnetic vibrations of an open plasma resonator
JO  - Čebyševskij sbornik
PY  - 2021
SP  - 402
EP  - 416
VL  - 22
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2021_22_2_a24/
LA  - ru
ID  - CHEB_2021_22_2_a24
ER  - 
%0 Journal Article
%A Yu. V. Bobylev
%A T. G. Meshcheryakova
%A V. A. Panin
%T Computer simulation of the stimulation of electromagnetic vibrations of an open plasma resonator
%J Čebyševskij sbornik
%D 2021
%P 402-416
%V 22
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2021_22_2_a24/
%G ru
%F CHEB_2021_22_2_a24
Yu. V. Bobylev; T. G. Meshcheryakova; V. A. Panin. Computer simulation of the stimulation of electromagnetic vibrations of an open plasma resonator. Čebyševskij sbornik, Tome 22 (2021) no. 2, pp. 402-416. http://geodesic.mathdoc.fr/item/CHEB_2021_22_2_a24/

[1] Bohm D., Gross E. P., “Theory of Plasma Oscillations”, Physical Review, 75:12 (1949), 1851–1864 | DOI | Zbl

[2] Dunaevsky A., Krasik Ya. E., Krokhmal A., et. al., “Emission properties of metal-ceramic, velvet, and carbon fiber cathodes”, Proc. of 13th Int. Conf. on High-Power Particle Beams, BEAMS 2000 (Nagaoka, Japan, June 25-30, 2000), 516–519

[3] Dunaevsky A., Krasik Ya. E., Krokhmal A., Felsteiner J., “Ferroelectric plasma cathodes”, Proc. of 13th Int. Conf. on High-Power Particle Beams, BEAMS 2000 (Nagaoka, Japan, June 25-30, 2000), 528–531

[4] Fisher A., Garate E., “Long pulse electron beams produced from carbon fiber cathodes”, Proc. 12th Int. Conf. on High-Power Particle Beams, BEAMS'98 (Haifa, Israel, June 7-12, 1998), 133–136 | MR

[5] Clark M.C., Marder B.M., Bacon L.D., “Magnetically insulated transmission line oscillator”, Appl. Phys. Lett., 52 (1988), 78–80 | DOI

[6] Ashby D. E. T. F., Eastwood J. W., Allen I. et al., “Comparison between experiment and computer modeling for simple MILO configurations”, IEEE Trans. Plasma Sci., 23:6 (1995), 959–969 | DOI

[7] Eastwood J. W., Hawkins K. C., Hook M. P., “The tapered MILO”, IEEE Trans Plasma Sci., 26:3 (1998), 698–712 | DOI

[8] Kuzelev M.V., Rukhadze A.A., Strelkov P.S., Plazmennaya relyativistskaya SVCh-elektronika, Izd. 2-e, dop., URSS, M., 2018, 622 pp.

[9] Strelkov P. S., “Experimental plasma relativistic microwave electronics”, Physics-Uspekhi, 62:5 (2019), 465–486 | DOI

[10] Sveshnikov A.G., Mogilevskii I.E., Izbrannye matematicheskie zadachi teorii difraktsii, Fizicheskii fakultet MGU, M., 2012, 239 pp.

[11] Konyaev D.A., Delitsyn A.L., “Matematicheskoe modelirovanie difraktsii akusticheskikh i elektromagnitnykh polei na slozhnykh rasseivatelyakh metodom konechnykh elementov”, Zhurnal radioelektroniki, 2014, no. 4 http://jre.cplire.ru/jre/apr14/3/text.html

[12] Maikov A.R., Sveshnikov A.G., Yakunin S.A., “Matematicheskoe modelirovanie plazmennogo generatora sverkhvysokochastotnogo izlucheniya”, ZhVM i MF, 25:6 (1985), 883–894 | MR

[13] Tikhonov A.N., Samarskii A.A., Uravneniya matematicheskoi fiziki, Nauka, M., 1977, 636 pp. | MR

[14] Kuzelev M.V., Maikov A.R., Poezd A.D., Rukhadze A.A., Sveshnikov A.G., Yakunin S.Ya., “Metod krupnykh chastits v elektrodinamike puchkovoi plazmy”, DAN SSSR, 300:5 (1988), 1112–1115

[15] Bobylev Yu.V., Kuzelev M.V., Rukhadze A.A., Sveshnikov A.G., “Nonsteady partial boundary conditions on radiation in the problems of relativistic high - current plasma microwave electronics”, Plasma Physics Reports, 25:7 (1999), 561–566

[16] Kholodova S.E., Peregudin S.I., Spetsialnye funktsii v zadachakh matematicheskoi fiziki, NIU ITMO, SPb., 2012, 72 pp.

[17] Panteleev A.V., Yakimova A.S., Teoriya funktsii kompleksnogo peremennogo i operatsionnoe ischislenie v primerakh i zadachakh, Izdatelstvo Lan, 2015, 447 pp.