On Rees closure in some classes of algebras with an operator
Čebyševskij sbornik, Tome 22 (2021) no. 2, pp. 271-287.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we introduce the concept of Rees closure for subalgebras of universal algebras. We denote by $\bigtriangleup_A$ the identity relation on $A$. A subalgebra $B$ of algebra $A$ is called a Rees subalgebra whenever $B^2 \cup \bigtriangleup_A$ is a congruence on $A$. A congruence $\theta$ of algebra $A$ is called a Rees congruence if $\theta=B^2 \cup \bigtriangleup_A$ for some subalgebra $B$ of $A$. We define a Rees closure operator by mapping arbitrary subalgebra $B$ of algebra $A$ into the smallest Rees subalgebra that contains $B$. It is shown that in the general case the Rees closure does not commute with the operation $\wedge$ on the lattice of subalgebras of universal algebra. Consequently, in the general case, a lattice of Rees subalgebras is not a sublattice of lattice of subalgebras. A non-one-element universal algebra $A$ is called a Rees simple algebra if any Rees congruence on $A$ is trivial. We characterize Rees simple algebras in terms of Rees closure. Universal algebra is called an algebra with operators if it has an additional set of unary operations acting as endomorphisms with respect to basic operations. We described Rees simple algebras in some subclasses of the class of algebras with one operator and a ternary basic operation. For algebras from these classes, the structure of lattice of Rees subalgebras is described. Necessary and sufficient conditions for the lattice of Rees subalgebras of algebras from these classes to be a chain are obtained.
Keywords: Rees closure, Rees subalgebra, Rees congruence, Rees simple algebra, algebra with operators.
@article{CHEB_2021_22_2_a15,
     author = {V. L. Usoltsev},
     title = {On {Rees} closure in some classes of algebras with an operator},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {271--287},
     publisher = {mathdoc},
     volume = {22},
     number = {2},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2021_22_2_a15/}
}
TY  - JOUR
AU  - V. L. Usoltsev
TI  - On Rees closure in some classes of algebras with an operator
JO  - Čebyševskij sbornik
PY  - 2021
SP  - 271
EP  - 287
VL  - 22
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2021_22_2_a15/
LA  - ru
ID  - CHEB_2021_22_2_a15
ER  - 
%0 Journal Article
%A V. L. Usoltsev
%T On Rees closure in some classes of algebras with an operator
%J Čebyševskij sbornik
%D 2021
%P 271-287
%V 22
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2021_22_2_a15/
%G ru
%F CHEB_2021_22_2_a15
V. L. Usoltsev. On Rees closure in some classes of algebras with an operator. Čebyševskij sbornik, Tome 22 (2021) no. 2, pp. 271-287. http://geodesic.mathdoc.fr/item/CHEB_2021_22_2_a15/

[1] Pinus A. G., “Gamiltonovo zamykanie na universalnykh algebrakh”, Sib. mat. zhurn., 55:3(325) (2014), 610–616 | MR | Zbl

[2] Pinus A. G., “O klassicheskom Galua-zamykanii dlya universalnykh algebr”, Izvestiya vuzov. Matematika, 2014, no. 2, 47–53 | Zbl

[3] Pinus A. G., “Ob odnom iz logicheskikh zamykanii na universalnykh algebrakh”, Sibirskie elektronnye matem. izvestiya, 12 (2015), 698–703 | MR | Zbl

[4] Pöschel R., “Galois connections for operations and relations”, Galois connections and applications, eds. K. Denecke, M. Erné, S. L. Wismath, Kluwer academic publishers, Dordrecht–Boston, 2004, 231–258 | DOI | MR | Zbl

[5] Csákány B., “Abelian properties of primitive classes of universal algebras”, Acta. Sci. Math., 25 (1964), 202–208 | MR | Zbl

[6] Shoda K., “Zur theorie der algebraischen erweiterungen”, Osaka Math. Journal, 4 (1952), 133–143 | MR | Zbl

[7] Tichy R. F., “The Rees congruences in universal algebras”, Publ. Inst. Math. (Beograd), 29 (1981), 229–239 | MR | Zbl

[8] Chajda I., Eigenthaler G., Langer H., Congruence classes in universal algebra, Heldermann-Verl, Vienna, 2003, 192 pp. | MR | Zbl

[9] Chajda I., Duda J., “Rees algebras and their varieties”, Publ. Math. (Debrecen), 32 (1985), 17–22 | DOI | MR | Zbl

[10] Šešelja B., Tepavčević A., “On a characterization of Rees varieties”, Tatra Mountains Math. Publ., 5 (1995), 61–69 | MR

[11] Chajda I., “Rees ideal algebras”, Math. Bohem., 122:2 (1997), 125–130 | DOI | MR | Zbl

[12] Gumm P. H., Ursini A., “Ideals in universal algebras”, Algebra Universalis, 19 (1984), 45–54 | DOI | MR | Zbl

[13] Szász G., “Rees factor lattices”, Publ. Math., 15 (1968), 259–266 | MR | Zbl

[14] Usoltsev V. L., “Algebry Risa i kongruents-algebry Risa v odnom klasse algebr s operatorom i osnovnoi operatsiei pochti edinoglasiya”, Chebyshevskii sb., 17:4(60) (2016), 157–166 | DOI | MR | Zbl

[15] Usoltsev V. L., “Kongruents-algebry Risa v klassakh unarov i algebr s operatorami”, Mezhdunarodnaya algebraicheskaya konferentsiya, posv. 110-letiyu so dnya rozhdeniya professora A. G. Kurosha, Tez. dokladov, Izdatelstvo MGU, M., 2018, 199–201

[16] Kartashov V. K., “Ob unarakh s maltsevskoi operatsiei”, Universalnaya algebra i ee prilozheniya, Tez. dokl. mezhd. seminara, posv. pamyati prof. L.A. Skornyakova, Volgograd, 1999, 31–32

[17] Usoltsev V. L., “Unary s ternarnoi maltsevskoi operatsiei”, Uspekhi matematicheskikh nauk, 63:5 (2008), 201–202 | DOI | MR | Zbl

[18] Usoltsev V. L., “Simple and pseudosimple algebras with operators”, Journal of Mathematical Sciences, 164:2 (2010), 281–293 | DOI | MR | Zbl

[19] Usoltsev V. L., “O gamiltonovykh ternarnykh algebrakh s operatorami”, Chebyshevskii sb., 15:3(51) (2014), 100–113 | MR | Zbl

[20] Usoltsev V. L., “O gamiltonovom zamykanii na klasse algebr s odnim operatorom”, Chebyshevskii sb., 16:4(56) (2015), 284–302 | MR | Zbl

[21] Usoltsev V. L., “O polinomialno polnykh i abelevykh unarakh s maltsevskoi operatsiei”, Uch. zap. Orlovskogo gos. un-ta, 6(50):2 (2012), 229–236

[22] Usoltsev V. L., “O podpryamo nerazlozhimykh unarakh s maltsevskoi operatsiei”, Izv. Volgogradskogo gos. ped. un-ta, ser. “Est. i fiz.-mat. nauki”, 2005, no. 4(13), 17–24

[23] Lata A. N., “O kongruents-kogerentnykh algebrakh Risa i algebrakh s operatorom”, Chebyshevskii sb., 18:2(62) (2017), 154–172 | DOI | MR | Zbl

[24] Usoltsev V. L., “Svobodnye algebry mnogoobraziya unarov s maltsevskoi operatsiei $p$, zadannogo tozhdestvom $p(x,y,x)=y$”, Chebyshevskii sb., 12:2(38) (2011), 127–134 | MR | Zbl

[25] Szendrei A., Clones in universal algebra, Les presses de l'Université de Montréal, Montréal, 1986, 166 pp. | MR | Zbl

[26] Baker K. A., Pixley A., “Polynomial interpolation and the Chinese Remainder Theorem for algebraic systems”, Math. Zeitschrift, 143 (1975), 165–174 | DOI | MR | Zbl

[27] Marković P., McKenzie R., “Few subpowers, congruence distributivity and near-unanimity terms”, Algebra Universalis, 58 (2008), 119–128 | DOI | MR | Zbl

[28] Usoltsev V. L., “O strogo prostykh ternarnykh algebrakh s operatorami”, Chebyshevskii sb., 14:4(48) (2013), 196–204 | MR | Zbl

[29] Usoltsev V. L., “O reshetkakh kongruentsii algebr s odnim operatorom i osnovnoi operatsiei pochti edinoglasiya”, Nauchno-tekhn. vestnik Povolzhya, 2016, no. 2, 28–30