On several problems of the analytic number theory in the creative work of G. I. Arkhipov and S. M. Voronin
Čebyševskij sbornik, Tome 22 (2021) no. 2, pp. 7-26.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the paper the formulation of problems are given and the contribution in their solution of the outstanding mathematicians of G. I. Arkhipov and S. M. Voronin are presented. At the base of the paper two papers, which are written in the coonection with jubileum data of scientists, are put.
Keywords: Riemann's zeta-function, Dirichlet's functions, trigonometric sums.
@article{CHEB_2021_22_2_a1,
     author = {V. N. Chubarikov and A. Ghiyasi},
     title = {On several problems of the analytic number theory in the creative work of {G.} {I.} {Arkhipov} and {S.} {M.} {Voronin}},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {7--26},
     publisher = {mathdoc},
     volume = {22},
     number = {2},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2021_22_2_a1/}
}
TY  - JOUR
AU  - V. N. Chubarikov
AU  - A. Ghiyasi
TI  - On several problems of the analytic number theory in the creative work of G. I. Arkhipov and S. M. Voronin
JO  - Čebyševskij sbornik
PY  - 2021
SP  - 7
EP  - 26
VL  - 22
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2021_22_2_a1/
LA  - ru
ID  - CHEB_2021_22_2_a1
ER  - 
%0 Journal Article
%A V. N. Chubarikov
%A A. Ghiyasi
%T On several problems of the analytic number theory in the creative work of G. I. Arkhipov and S. M. Voronin
%J Čebyševskij sbornik
%D 2021
%P 7-26
%V 22
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2021_22_2_a1/
%G ru
%F CHEB_2021_22_2_a1
V. N. Chubarikov; A. Ghiyasi. On several problems of the analytic number theory in the creative work of G. I. Arkhipov and S. M. Voronin. Čebyševskij sbornik, Tome 22 (2021) no. 2, pp. 7-26. http://geodesic.mathdoc.fr/item/CHEB_2021_22_2_a1/

[1] G. I. Arkhipov, Izbrannye trudy, Izd-vo Orlovsk. un-ta, Orel, 2013, 437 pp.

[2] G. I. Arkhipov, A. A. Karatsuba, “Novaya otsenka integrala I. M. Vinogradova”, Izv. AN SSSR. Ser. matem., 42 (1978), 751–762 | MR | Zbl

[3] G. I. Arkhipov, A. A. Karatsuba, V. N. Chubarikov, “Kratnye trigonometricheskie summy”, Tr. MIAN SSSR, 151, 1980, 3–128 | MR

[4] G. I. Arkhipov, A. A. Karatsuba, V. N. Chubarikov, Teoriya kratnykh trigonometricheskikh summ, Nauka, M., 1987, 370 pp.

[5] G. I. Arkhipov, V. A. Sadovnichii, V. N. Chubarikov, Lektsii po matematicheskomu analizu, Uchebnik dlya universitetov i ped. vuzov, ed. V. A. Sadovnichii, Vyssh. shk, M., 1999, 695 pp.

[6] G. I. Arkhipov, V. N. Chubarikov, “Sergei Mikhailovich Voronin (k 65-letiyu so dnya rozhdeniya)”, Chebyshevskii sbornik, 12:1 (2011), 4–9 | MR | Zbl

[7] S. M. Voronin, “Teorema ob “universalnosti” dzeta-funktsii Rimana”, Izv. AN SSSR. Ser. matem., 39:3 (1975), 475–486 | MR | Zbl

[8] S. M. Voronin, Prostye chisla, Znanie, M., 1978, 64 pp.

[9] S. M. Voronin, “O nulyakh nekotorykh ryadov Dirikhle, lezhaschikh na kriticheskoi pryamoi”, Izv. AN SSSR. Ser. matem., 44:1 (1980), 63–91 | MR | Zbl

[10] S. M. Voronin, “O metode I. M. Vinogradova”, Teoriya chisel, algebra, matematicheskii analiz i ikh prilozheniya, Sb. st. Posvyaschaetsya 100-letiyu so dnya rozhdeniya Ivana Matveevicha Vinogradova, Tr. MIAN, 200, Nauka, M., 1991, 114–123 | MR

[11] S. M. Voronin, Izbrannye trudy: Matematika, ed. A. A. Karatsuba, Izdatelstvo MGTU im. N. E. Baumana, M., 2006, 480 pp.

[12] S. M. Voronin, A. A. Karatsuba, Dzeta-funktsiya Rimana, Fizmatlit, M., 1994, 376 pp. | MR

[13] V. A. Sadovnichii, V. N. Chubarikov, “Gennadii Ivanovich Arkhipov (k 60-letiyu so dnya rozhdeniya)”, Chebyshevskii sbornik, 7:1(17) (2007), 5–31 | MR

[14] G. I. Arkhipov, V. N. Chubarikov, A. A. Karatsuba, Trigonometric sums in number theory and analysis, de Gruyter Exp. Math., 39, Walter de Gruyter GmbH Co. KG, Berlin, 2004, x+554 pp. | MR | Zbl

[15] S. M. Voronin, “Functional independence of Dirichlet L-functions”, Acta Arith., 27 (1975), 493–503 | DOI | MR | Zbl

[16] A. A. Karatsuba, S. M. Voronin, The Riemann Zeta-Function, De Gruyter Exp.Math., 5, Walter de Gruyter CmbH KG, Berlin, 1992, x+396 pp. | MR