Construction of some mutual arrangements of $M$-cubic and $M$-quintic
Čebyševskij sbornik, Tome 22 (2021) no. 1, pp. 76-91.

Voir la notice de l'article provenant de la source Math-Net.Ru

The construction of decomposable curves of degree 8 with multipliers of degrees 3 and 5 is considered in this paper. Sturmfels's modification of Viro's patchworking method for constructing decomposable curves is used. 29 pairwise different curves were constructed.
Keywords: real algebraic curves, real decomposable algebraic curves, patchworking.
@article{CHEB_2021_22_1_a5,
     author = {I. M. Borisov},
     title = {Construction of some mutual arrangements of $M$-cubic and $M$-quintic},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {76--91},
     publisher = {mathdoc},
     volume = {22},
     number = {1},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2021_22_1_a5/}
}
TY  - JOUR
AU  - I. M. Borisov
TI  - Construction of some mutual arrangements of $M$-cubic and $M$-quintic
JO  - Čebyševskij sbornik
PY  - 2021
SP  - 76
EP  - 91
VL  - 22
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2021_22_1_a5/
LA  - ru
ID  - CHEB_2021_22_1_a5
ER  - 
%0 Journal Article
%A I. M. Borisov
%T Construction of some mutual arrangements of $M$-cubic and $M$-quintic
%J Čebyševskij sbornik
%D 2021
%P 76-91
%V 22
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2021_22_1_a5/
%G ru
%F CHEB_2021_22_1_a5
I. M. Borisov. Construction of some mutual arrangements of $M$-cubic and $M$-quintic. Čebyševskij sbornik, Tome 22 (2021) no. 1, pp. 76-91. http://geodesic.mathdoc.fr/item/CHEB_2021_22_1_a5/

[1] P.S. Aleksandrov (red.), Problemy Gilberta, Nauka, M., 1969

[2] Gudkov D.A., “Topologiya veschestvennykh proektivnykh algebraicheskikh mnogoobrazii”, UMN, 29:4(178) (1974), 3–79 | MR | Zbl

[3] Polotovskii G. M., “Katalog $M$-raspadayuschikhsya krivykh 6-go poryadka”, DAN SSSR, 236:3 (1977), 548–551 | MR | Zbl

[4] Borisov I.M., Polotovskii G.M., “O topologii ploskikh veschestvennykh raspadayuschikhsya krivykh stepeni 8”, Itogi nauki i tekhn. Ser. Sovrem. mat. i ee pril. Temat. obz., 176, 2020, 3–18 | DOI

[5] Borisov I.M., Gorskaya V.A., Polotovskii G.M., “O topologii veschestvennykh raspadayuschikhsya krivykh stepenei 7 i 8”, Algebra, teoriya chisel i diskretnaya geometriya: sovremennye problemy, prilozheniya i problemy istorii, Materialy XVIII Mezhdunarodnoi kon- ferentsii, posvyaschennoi stoletiyu so dnya rozhdeniya professorov B. M. Bredikhina, V. I. Nechaeva i S. B. Stechkina, Tula, 2020, 423–427

[6] Harnack A., “Über die Vieltheiligkeit der ebenen algebraishen Curven”, Math. Ann., 10 (1876), 189–199 | DOI | MR

[7] Viro O. Ya., Patchworking real algebraic varieties, U.U.D.M. Report, No 42, Uppsala Univ., 1994

[8] Guschin M.A., Korobeinikov A.N., Polotovskii G.M., “Postroenie vzaimnykh raspolozhenii kubiki i kvartiki metodom kusochnogo konstruirovaniya”, Zapiski nauchnykh seminarov POMI, 267, 2000, 119–132

[9] Viro O.Ya., “Skleivanie algebraicheskikh giperpoverkhnostei i postroeniya krivykh”, Tezisy Leningradskoi Mezhdunarodnoi Topologicheskoi Konferentsii, L., 1982, 149–197

[10] Itenberg I., Viro O., “Patchworking algebraic curves disproves the Ragsdale conjecture”, Math. Intelligencer, 1996, 19–28 | DOI | MR | Zbl

[11] Sturmfels B. Viro's theorem for complete intersection, Annali della Scuola Normale Superiore di Pisa, 21 (1994), 377–386 | MR | Zbl

[12] Viro O.Ya., “Gluing of plane real algebraic curves and constructions of curves of degrees 6 and 7”, Lecture Notes in Math., 1060, 1984, 187–200 | DOI | MR | Zbl

[13] Korobeinikov A.N., “Novye postroeniya raspadayuschikhsya krivykh”, Vestnik NNGU (Matematicheskoe modelirovanie i optimalnoe upravlenie), 1(23) (2001), 17–27

[14] Guschin M.A., “Postroeniya nekotorykh raspolozhenii koniki i $M$-kvintiki s odnoi tochkoi na beskonechnosti”, Vestnik NNGU, ser. mat., 2004, no. 1(2), 43–52