Note on the mean absolute value theorem for the Dirichlet's $L$-function in the critical stripe
Čebyševskij sbornik, Tome 22 (2021) no. 1, pp. 67-75
Voir la notice de l'article provenant de la source Math-Net.Ru
In the paper we are continued investigations on a generalization and a improvement of the R. T. Turganaliev's result by the deduction of the asymptotic formula for the mean-value of the Rieman's zeta-function in the critical stripe with the rest term, having the power in the reduction. We are found the asymptotics of Dirichlet's $L$-function in the critical stripe, which improves the R. T. Turganaliev's theorem on the zeta-function for all values of the real part ($1/2\mathrm{Re}\, s\leq 1$). This result are got for the account of the different using of estimations of trigonometric sums on the base of the second derivative in the exponent.
Keywords:
Dirichlet's characters, Dirichlet's functions, the zeta-sum twisted together with the Dirichlet's character.
@article{CHEB_2021_22_1_a4,
author = {L. G. Arkhipova and V. N. Chubarikov},
title = {Note on the mean absolute value theorem for the {Dirichlet's} $L$-function in the critical stripe},
journal = {\v{C}eby\v{s}evskij sbornik},
pages = {67--75},
publisher = {mathdoc},
volume = {22},
number = {1},
year = {2021},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/CHEB_2021_22_1_a4/}
}
TY - JOUR AU - L. G. Arkhipova AU - V. N. Chubarikov TI - Note on the mean absolute value theorem for the Dirichlet's $L$-function in the critical stripe JO - Čebyševskij sbornik PY - 2021 SP - 67 EP - 75 VL - 22 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CHEB_2021_22_1_a4/ LA - ru ID - CHEB_2021_22_1_a4 ER -
L. G. Arkhipova; V. N. Chubarikov. Note on the mean absolute value theorem for the Dirichlet's $L$-function in the critical stripe. Čebyševskij sbornik, Tome 22 (2021) no. 1, pp. 67-75. http://geodesic.mathdoc.fr/item/CHEB_2021_22_1_a4/