Note on the mean absolute value theorem for the Dirichlet's $L$-function in the critical stripe
Čebyševskij sbornik, Tome 22 (2021) no. 1, pp. 67-75.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the paper we are continued investigations on a generalization and a improvement of the R. T. Turganaliev's result by the deduction of the asymptotic formula for the mean-value of the Rieman's zeta-function in the critical stripe with the rest term, having the power in the reduction. We are found the asymptotics of Dirichlet's $L$-function in the critical stripe, which improves the R. T. Turganaliev's theorem on the zeta-function for all values of the real part ($1/2\mathrm{Re}\, s\leq 1$). This result are got for the account of the different using of estimations of trigonometric sums on the base of the second derivative in the exponent.
Keywords: Dirichlet's characters, Dirichlet's functions, the zeta-sum twisted together with the Dirichlet's character.
@article{CHEB_2021_22_1_a4,
     author = {L. G. Arkhipova and V. N. Chubarikov},
     title = {Note on the mean absolute value theorem for the {Dirichlet's} $L$-function in the critical stripe},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {67--75},
     publisher = {mathdoc},
     volume = {22},
     number = {1},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2021_22_1_a4/}
}
TY  - JOUR
AU  - L. G. Arkhipova
AU  - V. N. Chubarikov
TI  - Note on the mean absolute value theorem for the Dirichlet's $L$-function in the critical stripe
JO  - Čebyševskij sbornik
PY  - 2021
SP  - 67
EP  - 75
VL  - 22
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2021_22_1_a4/
LA  - ru
ID  - CHEB_2021_22_1_a4
ER  - 
%0 Journal Article
%A L. G. Arkhipova
%A V. N. Chubarikov
%T Note on the mean absolute value theorem for the Dirichlet's $L$-function in the critical stripe
%J Čebyševskij sbornik
%D 2021
%P 67-75
%V 22
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2021_22_1_a4/
%G ru
%F CHEB_2021_22_1_a4
L. G. Arkhipova; V. N. Chubarikov. Note on the mean absolute value theorem for the Dirichlet's $L$-function in the critical stripe. Čebyševskij sbornik, Tome 22 (2021) no. 1, pp. 67-75. http://geodesic.mathdoc.fr/item/CHEB_2021_22_1_a4/

[1] Vinogradov I. M., Osobye varianty metoda trigonometricheskikh summ., Fizmatlit, M., 1976, 120 pp. | MR

[2] Vinogradov I. M., Metod trigonometricheskikh summ v teorii chisel, 2-e izd., ispravlennoe i dopolnennoe, Fizmatlit, M., 1980, 144 pp.

[3] van der Corput J. G., “Zahlentheoretische Abschätzungen”, Math. Ann., 84 (1921), 53–79 | DOI | MR

[4] van der Corput J. G. Verschärfung der Abschätzung beim Teilerproblem, Math. Ann., 87 (1922), 39–65 | DOI | MR

[5] Ingham A. E., “Mean-value theorems and the Riemann zeta-function”, Quart. J. Math., 4 (1933), 278–290 | DOI | MR | Zbl

[6] Davenport H., “Note on mean-value theorems for the Riemann zeta-function”, J. Lond. Math. Soc., 10 (1935), 136–138 | DOI | MR | Zbl

[7] Titchmarsh E. K., Teoriya dzeta-funktsii Rimana., IL, M., 1953

[8] Turganaliev R. T., “Asimptoticheskaya formula dlya srednikh znachenii drobnoi stepeni dzeta-funktsii Rimana”, Trudy Matem. in-ta AN SSSR, 158, 1981, 203–226 | MR | Zbl

[9] Vinogradov I. M., “Novaya otsenka funktsii $\zeta(1+it)$”, Izv. AN SSSR, ser. matem., 22:2 (1958), 161–164 | MR | Zbl

[10] Korobov N. M., “O nulyakh funktsii $\zeta(s)$”, Dokl. AN SSSR, 118 (1958), 231–232 | Zbl

[11] Korobov N. M., “Otsenki trigonometricheskikh summ i ikh prilozheniya”, Usp. matem. nauk, 13:4 (1958), 185–192 | MR | Zbl

[12] Richert H.-E., “Zur Abschätzung der Riemannschen Zeta-funktion in der Nahe der Vertikalen $\sigma=1$”, Math. Ann., 169:2 (1967), 97–101 | DOI | MR | Zbl

[13] Karatsuba A. A., “Otsenki trigonometricheskikh summ metodom I. M. Vinogradova i ikh prilozheniya”, Tr. MIAN SSSR, 112, 1971, 241–255 | MR | Zbl

[14] Arkhipov G., Buriev K., “Refinement of estimates for the Riemann zeta-function in a neibourhood of the line $\Re(s)=1$”, Integral Transforms and Special Functions, 1:1 (1993), 1–7 | DOI | MR | Zbl

[15] Devenport G., Multiplikatinaya teoriya chisel, Fizmatlit, M., 1971, 200 pp.

[16] Voronin S. M., Karatsuba A. A., Dzeta-funktsiya Rimana, Fizmatlit, M., 1994, 376 pp. | MR

[17] Karatsuba A. A., Osnovy analiticheskoi teorii chisel, Nauka, M., 1983, 240 pp. | MR

[18] Popov O. V., “On Hadamard's method concerning zeros of the Riemann zeta-function”, Integral Transforms and Special Functions, 1:2 (1993), 143–144 | DOI | MR | Zbl

[19] Popov O. V., “Vyvod sovremennoi granitsy nulei dzeta-funktsii Rimana po metodu Adamara”, Vestnik MGU, ser. 1, mat., mekh., 1994, no. 1, 51–54