Basic equations determining stress-strain plastic state of metal materials taking into account their physical and structural parameters
Čebyševskij sbornik, Tome 22 (2021) no. 1, pp. 473-481.

Voir la notice de l'article provenant de la source Math-Net.Ru

Basic equations and determining relations are given, which determine stressed-deformed plastic state of metal materials taking into account their physical and structural parameters. The approach to the formulation of defining relationships is based on the inclusion in the number of criterion, along with traditional macro-mechanical, physical and structural parameters. These include, first of all, the parameter of material damage by defects of deformation origin. On the basis of experiments, a connection was established between the stress necessary for the movement of the blocked dislocation and the measure of damage by deformation microfects, necessary for determining the yield strength and, further, the evolution of the loading surface taking into account the factual factors affecting it. The two-stage stretching tests of the AlMg3 alloy samples showed a significant effect of strain resistance on the stress state.
Keywords: basic equations determining ratios, ductility, stresses, strains, physical-structural parameters, damage, energy dissipation, load surface.
@article{CHEB_2021_22_1_a31,
     author = {N. D. Tutyshkin and V. Yu. Travin},
     title = {Basic equations determining stress-strain plastic state of metal materials taking into account their physical and structural parameters},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {473--481},
     publisher = {mathdoc},
     volume = {22},
     number = {1},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2021_22_1_a31/}
}
TY  - JOUR
AU  - N. D. Tutyshkin
AU  - V. Yu. Travin
TI  - Basic equations determining stress-strain plastic state of metal materials taking into account their physical and structural parameters
JO  - Čebyševskij sbornik
PY  - 2021
SP  - 473
EP  - 481
VL  - 22
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2021_22_1_a31/
LA  - ru
ID  - CHEB_2021_22_1_a31
ER  - 
%0 Journal Article
%A N. D. Tutyshkin
%A V. Yu. Travin
%T Basic equations determining stress-strain plastic state of metal materials taking into account their physical and structural parameters
%J Čebyševskij sbornik
%D 2021
%P 473-481
%V 22
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2021_22_1_a31/
%G ru
%F CHEB_2021_22_1_a31
N. D. Tutyshkin; V. Yu. Travin. Basic equations determining stress-strain plastic state of metal materials taking into account their physical and structural parameters. Čebyševskij sbornik, Tome 22 (2021) no. 1, pp. 473-481. http://geodesic.mathdoc.fr/item/CHEB_2021_22_1_a31/

[1] Tutyshkin N. D., Tregubov V. I., Svyazannye zadachi teorii povrezhdaemosti deformiruemykh materialov, ed. N.D. Tutyshkin, TulGU–RARAN, Tula, 2016, 267 pp.

[2] Kolmogorov V. L., Mekhanika obrabotki metallov davleniem, Uralskii gos. tekhn. un-t, Ekaterinburg, 2001, 836 pp.

[3] McClintock F. A., “A criterion for ductile fracture by the growth of holes”, Journal of Applied Mechanichs, 90 (1968), 363–371 | DOI

[4] Bao Y., Wierzbicki T., “On fracture locus in the equivalent strain and stress triaxiality space”, International Journal Mechanical Sciences, 46 (2004), 81–98 | DOI

[5] Tutyshkin N. D., Müller W. H., Wille R., Zapara M. A., “Strain-induced damage of metals under large plastic deformation: Theoretical framework and experiments”, International Journal of Plasticity, 59 (2014), 133–151 | DOI

[6] Maiboroda V. P., Kravchuk A. S., Kholin N. N., Skorostnoe deformirovanie konstruktsionnykh materialov, Mashinostroenie, M., 1986, 264 pp.

[7] Kachanov L. M., Osnovy teorii plastichnosti, Nauka, M., 1969, 420 pp.

[8] Malmeister A. K., Tamuzh V. P., Teters G. A., Soprotivlenie polimernykh i kompozitnykh materialov, Zinatne, Riga, 1980, 572 pp.

[9] Khill R., Matematicheskaya teoriya plastichnosti, Per. s angl. E.I. Grigolyuka, Gostekhizdat, M., 1956, 407 pp.

[10] Bell Dzh. F., Eksperimentalnye osnovy mekhaniki deformiruemykh tverdykh tel, Per. s angl., v. 2, Konechnye deformatsii, ed. A.P. Falin, Nauka, M., 1984, 432 pp.

[11] Sedov L. I., Mekhanika sploshnoi sredy, V 2 t., v. 2, Nauka, M., 1984, 560 pp. | MR

[12] Zaikov M.A., “Prochnost uglerodistykh stalei pri vysokikh temperaturakh”, Zhurnal tekhnicheskoi fiziki, 19:6 (1949), 684–695

[13] Ekobori T., Fizika i mekhanika razrusheniya i prochnosti tverdykh tel, Metallurgiya, M., 1971, 264 pp.

[14] Bernshtein M. L., Termomekhanicheskaya obrabotka metallov i splavov, v. 2, Metallurgiya, M., 1968, 575 pp.

[15] Bernshtein M. L., Struktura deformirovannykh metallov, Metallurgiya, M., 1977, 431 pp.