Diffraction of cylindrical sound waves by an elastic cylinder with an radially inhomogeneous coating
Čebyševskij sbornik, Tome 22 (2021) no. 1, pp. 460-472.

Voir la notice de l'article provenant de la source Math-Net.Ru

In article the problem of the diffraction of cylindrical monochromatic sound waves by an homogeneous elastic cylinder with a radially inhomogeneous elastic covering is considered. It is believed that the body is placed in an endless space filled with ideal fluid. The analytical solution of the problem is received. Wave fields in a containing medium and homogeneous elastic cylinder are found in the form of expansions in wave cylindrical functions. The boundary-value problem for the system of ordinary second order differential equations is constructed for determination of the displacement field in inhomogeneous coating. Numerical calculations of angular and frequency characteristics of the scattered field for elastic cylinders with homogeneous and inhomogeneous coatings are performed. Influence of continuously inhomogeneous elastic coatings on sound-reflecting properties of elastic cylindrical bodies are revealed.
Keywords: diffraction, cylindrical sound waves, elastic cylinder, inhomogeneous elastic coating.
@article{CHEB_2021_22_1_a30,
     author = {L. A. Tolokonnikov and D. Yu. Efimov},
     title = {Diffraction of cylindrical sound waves by an elastic cylinder with an radially inhomogeneous coating},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {460--472},
     publisher = {mathdoc},
     volume = {22},
     number = {1},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2021_22_1_a30/}
}
TY  - JOUR
AU  - L. A. Tolokonnikov
AU  - D. Yu. Efimov
TI  - Diffraction of cylindrical sound waves by an elastic cylinder with an radially inhomogeneous coating
JO  - Čebyševskij sbornik
PY  - 2021
SP  - 460
EP  - 472
VL  - 22
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2021_22_1_a30/
LA  - ru
ID  - CHEB_2021_22_1_a30
ER  - 
%0 Journal Article
%A L. A. Tolokonnikov
%A D. Yu. Efimov
%T Diffraction of cylindrical sound waves by an elastic cylinder with an radially inhomogeneous coating
%J Čebyševskij sbornik
%D 2021
%P 460-472
%V 22
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2021_22_1_a30/
%G ru
%F CHEB_2021_22_1_a30
L. A. Tolokonnikov; D. Yu. Efimov. Diffraction of cylindrical sound waves by an elastic cylinder with an radially inhomogeneous coating. Čebyševskij sbornik, Tome 22 (2021) no. 1, pp. 460-472. http://geodesic.mathdoc.fr/item/CHEB_2021_22_1_a30/

[1] Romanov A. G., Tolokonnikov L. A., “Rasseyanie zvukovykh voln tsilindrom s neodnorodnym uprugim pokrytiem”, Prikladnaya matematika i mekhanika, 75:5 (2011), 850–857 | MR | Zbl

[2] Tolokonnikov L. A., “Rasseyanie naklonno padayuschei ploskoi zvukovoi volny uprugim tsilindrom s neodnorodnym pokrytiem”, Izvestiya Tulskogo gos. un-ta. Estestvennye nauki, 2013, no. 2-2, 265–274

[3] Larin N. V., Tolokonnikov L. A., “Rasseyanie ploskoi zvukovoi volny uprugim tsilindrom s diskretno-sloistym pokrytiem”, Prikladnaya matematika i mekhanika, 79:2 (2015), 242–250 | Zbl

[4] Tolokonnikov L. A., “Difraktsiya tsilindricheskikh zvukovykh voln na tsilindre s neodnorodnym uprugim pokrytiem”, Izvestiya Tulskogo gos. un-ta. Estestvennye nauki, 2013, no. 3, 202–208

[5] Larin N. V., Skobeltsyn S. A., Tolokonnikov L. A., “Ob opredelenii lineinykh zakonov neodnorodnosti tsilindricheskogo uprugogo sloya, imeyuschego naimenshee otrazhenie v zadannom napravlenii pri rasseyanii zvuka”, Izvestiya Tulskogo gos. un-ta. Estestvennye nauki, 2014, no. 4, 54–62

[6] Tolokonnikov L. A., Larin N. V., Skobeltsyn S. A., “Modelirovanie neodnorodnogo pokrytiya uprugogo tsilindra s zadannymi zvukootrazhayuschimi svoistvami”, Prikladnaya mekhanika i tekhnicheskaya fizika, 58:4 (2017), 189–199 | Zbl

[7] Tolokonnikov L. A., “Difraktsiya ploskoi zvukovoi volny na dvukh uprugikh tsilindrakh s neodnorodnymi pokrytiyami”, Chebyshevskii sbornik, 19:1 (2018), 238–254 | DOI | MR | Zbl

[8] Tolokonnikov L. A., “Difraktsiya ploskoi zvukovoi volny na uprugom tsilindre s neodnorodnym pokrytiem, nakhodyaschemsya vblizi ploskoi poverkhnosti”, Izvestiya Tulskogo gos. un-ta. Tekhnicheskie nauki, 2018, no. 9, 276–289

[9] Tolokonnikov L. A., Efimov D. Yu., “Rasseyanie naklonno padayuschei ploskoi zvukovoi volny uprugim tsilindrom s neodnorodnym pokrytiem, nakhodyaschimsya vblizi ploskoi poverkhnosti”, Chebyshevckii sbornik, 21:4 (2020), 361–373

[10] Tolokonnikov L. A., “Rasseyanie zvukovykh voln tsilindrom s radialno-neodnorodnym uprugim pokrytiem v ploskom volnovode”, Chebyshevckii sbornik, 20:1 (2019), 270–281

[11] Tolokonnikov L. A., Belkin A. E., “Opredelenie zakonov neodnorodnosti pokrytiya tsilindra, nakhodyaschegosya v ploskom volnovode, dlya obespecheniya minimalnogo otrazheniya zvuka”, Chebyshevskii sbornik, 21:4 (2020), 346–360

[12] Shenderov E. L., Volnovye zadachi gidroakustiki, Sudostroenie, L., 1972, 352 pp.

[13] Ivanov E. A., Difraktsiya elektromagnitnykh voln na dvukh telakh, Nauka i tekhnika, Minsk, 1968, 584 pp.

[14] Novatskii V., Teoriya uprugosti, Mir, M., 1975, 872 pp.

[15] Zavyalov Yu. S., Kvasov B. I., Miroshnichenko V. L., Metody splain-funktsii, Nauka, M., 1980, 352 pp. | MR

[16] Lebedev N. N., Spetsialnye funktsii i ikh prilozheniya, Fizmatgiz, M., 1963, 358 pp.