At the sharp turns of the 20th century European history
Čebyševskij sbornik, Tome 22 (2021) no. 1, pp. 403-412.

Voir la notice de l'article provenant de la source Math-Net.Ru

Nikolai Nikolaevich Luzin’s life (1883 – 1950) and work of this outstanding Russian mathematician coincided with a very difficult period in Russian history: two World Wars, the 1917 revolutions, the civil war, the construction of a new type of state – the Union of Soviet Socialist Republics, which included collectivization and industrialization, accompanied by the mass terror that without exception affected all the strata of Soviet society. Against the background of these dramatic events took place the process of formation and flourishing of Luzin the scientist, the creator of one of the leading mathematical schools of the XXth century – the Moscow school of function theory, which became one of the cornerstones in the foundation of the Soviet mathematical school. Luzin’s work could be divided into two periods: the first one comprises the problems regarding the metric theory of functions, culminating in his famous dissertation "Integral and Trigonometric Series" (1915), and the second one which is mainly devoted to the development of problems arising from the theory of analytic sets. The underlying idea of Luzin's research was the problem of the structure of the arithmetic continuum, which became the super task of his work.
Keywords: Egorov, set theory actual infinity, Borel, axiom of choice, continuum hypothesis, Moscow school of function theory, descriptive function theory, arithmetic continuum.
@article{CHEB_2021_22_1_a27,
     author = {S. S. Demidov},
     title = {At the sharp turns of the 20th century {European} history},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {403--412},
     publisher = {mathdoc},
     volume = {22},
     number = {1},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2021_22_1_a27/}
}
TY  - JOUR
AU  - S. S. Demidov
TI  - At the sharp turns of the 20th century European history
JO  - Čebyševskij sbornik
PY  - 2021
SP  - 403
EP  - 412
VL  - 22
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2021_22_1_a27/
LA  - ru
ID  - CHEB_2021_22_1_a27
ER  - 
%0 Journal Article
%A S. S. Demidov
%T At the sharp turns of the 20th century European history
%J Čebyševskij sbornik
%D 2021
%P 403-412
%V 22
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2021_22_1_a27/
%G ru
%F CHEB_2021_22_1_a27
S. S. Demidov. At the sharp turns of the 20th century European history. Čebyševskij sbornik, Tome 22 (2021) no. 1, pp. 403-412. http://geodesic.mathdoc.fr/item/CHEB_2021_22_1_a27/

[1] Tyulina A.K., “Ob odnoi rukopisi neizvestnogo avtora (k biografii N.N. Luzina)”, Istoriko-matematicheskie issledovaniya. Ser. 2, 2006, no. 11 (46), 267–306 | MR

[2] “Pisma D.F. Egorova k N.N. Luzinu. Predislovie P.S. Aleksandrova. Publikatsiya i primechaniya F.A. Medvedeva pri uchastii A.P. Yushkevicha”, Istoriko-matematicheskie issledovaniya, 1980, no. 25, 335–361 | Zbl

[3] Volkov V.A., “D.F. Egorov: novye arkhivnye dokumenty (k istorii Moskovskoi matematicheskoi shkoly)”, Istoriko-matematicheskie issledovaniya. Ser. 2, 2005, no. 10 (45), 13–19

[4] “Perepiska N.N. Luzina s P.A. Florenskim. Publikatsiya, predislovie i primechaniya S.S. Demidova, A.N. Parshina, S.M. Polovinkina, P.V. Florenskogo)”, Istoriko-matematicheskie issledovaniya, 1989, no. 31, 116–125

[5] Lusin N., Leçons sur les ensembles analytiques et leurs applications. Préface de M. Henri Lebesgue; une note de M. Waclaw Sierpinski, Gauthier-Villars, Paris, 1930, 328 pp. | MR

[6] Luzin N.N., “K osnovnoi teoreme integralnogo ischisleniya”, Matematicheskii sbornik, 28:2 (1912), 266–294

[7] Lusin N., “Sur les propriétés des fonctions mesurables”, C.R. Acad. Sc. Paris, 154 (1912), 1688–1690

[8] Luzin N.N., Integral i trigonometricheskii ryad, tip. Lissnera i Sobko, M., 1915 | MR

[9] Igoshin V.I., Mikhail Yakovlevich Suslin. 1894–1919, Nauka. Fizmatlit, M., 1996

[10] Dyugak P., “«Delo» Luzina i frantsuzskie matematiki”, Istoriko-matematicheskie issledovaniya. Ser. 2, 2000, no. 5 (40), 119–142 | MR

[11] Delo akademika Nikolaya Nikolaevicha Luzina, Izd-vo MTsNMO, M., 2019

[12] Luzin N.N., Sobranie sochinenii, v. 2, Izd-vo AN SSSR, M., 1958

[13] Keldysh L.V., Novikov P.S., “Raboty N.N. Luzina v oblasti deskriptivnoi teorii mnozhestv”, Uspekhi matematicheskikh nauk, 8:2(54) (1953), 93–104 | MR | Zbl

[14] Keldysh L.V., “Idei N.N. Luzina v deskriptivnoi teorii mnozhestv”, Uspekhi matematicheskikh nauk, 29:5(179) (1974), 183–196 | MR | Zbl

[15] Uspenskii V.A., “Vklad N.N. Luzina v deskriptivnuyu teoriyu mnozhestv i funktsii: ponyatiya, problemy, predskazaniya”, Uspekhi matematicheskikh nauk, 40:3 (243) (1985), 85–116 | MR

[16] Kanovei V.G., “Razvitie deskriptivnoi teorii mnozhestv pod vliyaniem trudov N.N. Luzina”, Uspekhi matematicheskikh nauk, 40:3(243) (1985), 117–155 | MR

[17] Bogachev V.I., “Luzinskie motivy v sovremennykh issledovaniyakh”, Sovremennye problemy matematiki i mekhaniki, 8:2 (2013), 4–24 | MR

[18] Moschovakis Y., Descriptive Set Theory, North Holland, Amsterdam, 1980 | MR | Zbl

[19] Kanovei V.G., Lyubetskii V.A., Sovremennaya teoriya mnozhestv: nachala deskriptivnoi dinamiki, Nauka, M., 2007

[20] Kanovei V., Borel Equivalence Relations; Structure and Classification, University Lecture Series of AMS, 44, American Mathematical Society, New York, 2008 | DOI | MR | Zbl

[21] Gao S., Invariant Descriptive Set Theory, CRC Press, Boca Raton, FL, 2009 | MR | Zbl

[22] Kanovei V.G., Lyubetskii V.A., Sovremennaya teoriya mnozhestv: borelevskie i proektivnye mnozhestva, MTsNMO, M., 2010

[23] Kanovei V.G., Lyubetskii V.A., Sovremennaya teoriya mnozhestv: absolyutno nerazreshimye klassicheskie problemy, MTsNMO, M., 2013