Mathematical regularities of changes in the characteristics of the friction process of a porous composite material based on copper containing oil with graphene particles
Čebyševskij sbornik, Tome 22 (2021) no. 1, pp. 390-402.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper presents the results of a study of the sliding friction processes of a porous copper-based material impregnated with lubricating oil with dispersed particles of fluorinated graphene. Mathematical regularities of changes in the characteristics of the friction interaction are established. It is shown that the regularities of changes in the average friction force have a sigmoid-step character. Experimental results have been obtained showing that with an increase in the concentration of aggregates from flakes of fluorinated graphene in the lubricating oil, the average friction force and coefficient of friction decrease, while a good anti-friction effect is observed. It is shown that the average work of the friction force, and consequently the energy losses due to friction, when adding 0.01% of aggregates from fluorinated graphene flakes to the lubricating oil decreases by 3721 j, and when adding 0.1% — by 4098 j. It was found that the average coefficient of friction when adding 0.01% of fluorinated graphene flake aggregates to the lubricating oil decreases by 27%, and when adding 0.1% — by 30%.
Keywords: copper-based porous material, sigmoid-step friction patterns, lubricant composition, friction, fluorinated graphene.
@article{CHEB_2021_22_1_a26,
     author = {A. D. Breki and S. G. Chulkin and A. G. Kolmakov and O. V. Kuzovleva and A. E. Gvozdev and E. V. Mazin and A. M. Kuzmin},
     title = {Mathematical regularities of changes in the characteristics of the friction process of a porous composite material based on copper containing oil with graphene particles},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {390--402},
     publisher = {mathdoc},
     volume = {22},
     number = {1},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2021_22_1_a26/}
}
TY  - JOUR
AU  - A. D. Breki
AU  - S. G. Chulkin
AU  - A. G. Kolmakov
AU  - O. V. Kuzovleva
AU  - A. E. Gvozdev
AU  - E. V. Mazin
AU  - A. M. Kuzmin
TI  - Mathematical regularities of changes in the characteristics of the friction process of a porous composite material based on copper containing oil with graphene particles
JO  - Čebyševskij sbornik
PY  - 2021
SP  - 390
EP  - 402
VL  - 22
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2021_22_1_a26/
LA  - ru
ID  - CHEB_2021_22_1_a26
ER  - 
%0 Journal Article
%A A. D. Breki
%A S. G. Chulkin
%A A. G. Kolmakov
%A O. V. Kuzovleva
%A A. E. Gvozdev
%A E. V. Mazin
%A A. M. Kuzmin
%T Mathematical regularities of changes in the characteristics of the friction process of a porous composite material based on copper containing oil with graphene particles
%J Čebyševskij sbornik
%D 2021
%P 390-402
%V 22
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2021_22_1_a26/
%G ru
%F CHEB_2021_22_1_a26
A. D. Breki; S. G. Chulkin; A. G. Kolmakov; O. V. Kuzovleva; A. E. Gvozdev; E. V. Mazin; A. M. Kuzmin. Mathematical regularities of changes in the characteristics of the friction process of a porous composite material based on copper containing oil with graphene particles. Čebyševskij sbornik, Tome 22 (2021) no. 1, pp. 390-402. http://geodesic.mathdoc.fr/item/CHEB_2021_22_1_a26/

[1] M. E. Solovev, A. B. Raukhvarger, N. G. Savinskii, V. I. Irzhak, “Modelirovanie i sintez oksida grafena iz termorasshirennogo grafita”, Zhurnal obschei khimii, 87:4 (2017), 677–683

[2] Novoselov K. S., Geim A. K., Morozov S. V. et al., “Electric Field Effect in Atomically Thin Carbon Films”, Science, 306:5696 (2004), 666–669 | DOI

[3] S. V. Tkachev, E. Yu. Buslaeva, S. P. Gubin, “Grafen — novyi uglerodnyi nanomaterial”, Neorganicheskie materialy, 47:1 (2011), 5–14

[4] S. V. Tkachev, E. Yu. Buslaeva, A. V. Naumkin, S. L. Kotova, I. V. Laure, S. P. Gubin, “Grafen, poluchennyi vosstanovleniem oksida grafena”, Neorganicheskie materialy, 48:8 (2012), 909

[5] Geim A. K., Novoselov K. S., “The Rise of Graphene”, Nature Mater., 6:3 (2007), 183–191 | DOI

[6] S. P. Gubin, S. V. Tkachev, Grafen i rodstvennye nanoformy ugleroda, Knizhnyi dom «Librokom», M., 2012, 104 pp.

[7] A. I. Volokitin, “Kvantovoe trenie i grafen”, Priroda, 2011, no. 9 (1153), 13–21

[8] N. I. Legkonogikh, “Smazochnaya sposobnost grafena pri ispolzovanii v parakh treniya «stal-zhelezo» i «stal-bronza»”, Avtomatizirovannoe proektirovanie v mashinostroenii, 2020, no. 8, 48–50

[9] Novikova A. A., Burlakova V. E., Varavka V. N., Uflyand I. E., Drogan E. G., Irkha V. A., “Influence of glycerol dispersions of graphene oxide on the friction of rough steel surfaces”, Journal of Molecular Liquids, 284 (2019), 1–11 | DOI

[10] Berman D., Erdemir A., Sumant A. V., “Few layer graphene to reduce wear and friction on slidingsteel surfaces”, Carbon, 54 (2013), 454–459 | DOI

[11] Restuccia P., Righi M. C., “Tribochemistry of graphene on iron and its possible role in lubrication of steel”, Carbon, 106 (2016), 118–124 | DOI

[12] Obraztsova E. A., Osadchy A. V., Obraztsova E. D., Lefrant S., Yaminsky I. V., “Statistical Analysis of Atomic Force Microscopy and Raman Spectroscopy Data for Estimation of Graphene Layer Numbers”, Phys. Stat. Sol. B, 245:10 (2008), 2055–2059 | DOI

[13] Breki A., Nosonovsky M., “Ultraslow frictional sliding and the stick-slip transition”, Applied Physics Letters, 113:24 (2018), 241602 | DOI

[14] Breki A. D., Gvozdev A. E., Kolmakov A. G., “Semiempirical mathematical models of the pivoting friction of SHKH15 steel over R6M5 steel according to the ball-plane scheme with consideration of wear”, Inorganic Materials: Applied Research, 10:4 (2019), 1008–1013 | DOI

[15] Breki A. D., Vasilyeva E. S., Tolochko O. V., Didenko A. L., Nosonovsky M., “Frictional properties of a nanocomposite material with a linear polyimide matrix and tungsten diselinide nanoparticle reinforcement”, Journal of Tribology, 141:8 (2019), 082002 | DOI

[16] Breki A. D., Kolmakov A. G., Gvozdev A. E., Sergeev N. N., “Investigation of the pivoting friction of SHKH15 steel over R6M5 and 10R6M5-MP steel with the use of mathematical modeling”, Inorganic Materials: Applied Research, 10:4 (2019), 927–932 | DOI

[17] Breki A. D., Gvozdev A. E., Kolmakov A. G., Starikov N. E., Provotorov D. A., Sergeyev N. N., Khonelidze D. M., “On friction of metallic materials with consideration for superplasticity phenomenon”, Inorganic Materials: Applied Research, 8:1 (2017), 126–129 | DOI

[18] Breki A. D., Gvozdev A. E., Kolmakov A. G., “Application of generalized pascal triangle for description of oscillations of friction forces”, Inorganic Materials: Applied Research, 8:4 (2017), 509–514 | DOI | MR

[19] Breki A., Nosonovsky M., “Einsteins viscosity equation for nanolubricated friction”, Langmuir: the ACS journal of surfaces and colloids, 34:43 (2018), 12968–12973 | DOI

[20] Rebrova I. Yu., Chubarikov V. N., Dobrovolskii N. N., Dobrovolskii M. N., Dobrovolskii N. M., “O klassicheskikh teoretiko-chislovykh setkakh”, Chebyshevskii sbornik, 19:4 (68) (2018), 118–176 | DOI | MR | Zbl

[21] Dobrovolskii N. N., Dobrovolskaya L. P., Seregina N. K., Bocharova O. E., Algoritmy vychisleniya optimalnykh koeffitsientov, Monografiya, ed. N. M. Dobrovolskii, Izd-vo Tul. gos. ped. un-ta im. L. N. Tolstogo, Tula, 2016, 223 pp.

[22] Dobrovolskaya L. P., Shelobaev S. I., “Teoretiko-chislovoi metod v ekonometrike”, Algebra, teoriya chisel i diskretnaya geometriya: sovremennye problemy, prilozheniya i problemy istorii, Materialy XVI Mezhdunarodnoi konferentsii, posvyaschennoi 80-letiyu so dnya rozhdeniya professora Mishelya Deza, Tul. gos. ped. un-t im. L. N. Tolstogo, Tula, 2019, 280–283

[23] Nikitin A. N., Rusakova E. I., Parkhomenko Eh. I., Ivankina T. I., Dobrovol'skij N. M., “Reconstruction of Paleotectonic Stresses Using Data on Piezoelectric Texstures of Rocks”, Izvestiya Earth Physics, 24:9 (1988), 728–734