On two formulas for Macdonald functions and their group-theoretical sense
Čebyševskij sbornik, Tome 22 (2021) no. 1, pp. 225-233.

Voir la notice de l'article provenant de la source Math-Net.Ru

Two formulas for Macdonald functions (which are a widely known in mathematics and applications particular case of cylinder functions) are obtained by using some integral bilinear functionals defined on a pair of representation spaces or a square of these spaces.
Keywords: Macdonald functions, three-dimensional Lorentz group.
@article{CHEB_2021_22_1_a16,
     author = {A. I. Nizhnikov and I. A. Shilin},
     title = {On two formulas for {Macdonald} functions and their group-theoretical sense},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {225--233},
     publisher = {mathdoc},
     volume = {22},
     number = {1},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2021_22_1_a16/}
}
TY  - JOUR
AU  - A. I. Nizhnikov
AU  - I. A. Shilin
TI  - On two formulas for Macdonald functions and their group-theoretical sense
JO  - Čebyševskij sbornik
PY  - 2021
SP  - 225
EP  - 233
VL  - 22
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2021_22_1_a16/
LA  - ru
ID  - CHEB_2021_22_1_a16
ER  - 
%0 Journal Article
%A A. I. Nizhnikov
%A I. A. Shilin
%T On two formulas for Macdonald functions and their group-theoretical sense
%J Čebyševskij sbornik
%D 2021
%P 225-233
%V 22
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2021_22_1_a16/
%G ru
%F CHEB_2021_22_1_a16
A. I. Nizhnikov; I. A. Shilin. On two formulas for Macdonald functions and their group-theoretical sense. Čebyševskij sbornik, Tome 22 (2021) no. 1, pp. 225-233. http://geodesic.mathdoc.fr/item/CHEB_2021_22_1_a16/

[1] Vilenkin N. Ya., Spetsialnye funktsii i teoriya predstavlenii grupp, Nauka, M., 1965 | MR

[2] Vilenkin N. Ya., Shleinikova M. A., “Integralnye sootnosheniya dlya funktsii Uittekera i predstavleniya trekhmernoi gruppy Lorentsa”, Mat. sb., 81 (1970), 185–191 | Zbl

[3] Gelfand I. M., Graev M. I., Vilenkin N. Ya., Integralnaya geometriya i svyazannye s nei voprosy teorii predstavlenii, Fizmatlit, M., 1962 | MR

[4] Gradshtein I. S., Ryzhik I. M., Tablitsy integralov, summ, ryadov i proizvedenii, Fizmatlit, M., 1963 | MR

[5] Prudnikov A. P., Brychkov Yu. A., Marichev O. I., Integraly i ryady. Dopolnitelnye glavy, Nauka, M., 1986 | MR

[6] Prudnikov A. P., Brychkov Yu. A., Marichev O. I., Integraly i ryady. Spetsialnye funktsii, Nauka, M., 1983 | MR

[7] Prudnikov A. P., Brychkov Yu. A., Marichev O. I., Integraly i ryady. Elementarnye funktsii, Nauka, M., 1981 | MR

[8] Shilin I. A., “Dvoinye $SO(2,1)$-invariantnye integraly i formuly dlya funktsii Uittekera”, Izvestiya vuzov. Matematika, 2012, no. 5, 56–66 | Zbl

[9] Aurich R., Lustig S., Steiner F., “Hyperbolic universes with a horned topology and the cosmic microwave background anisotropy”, Classical and Quantum Gravity, 21 (2004), 4901–4925 | DOI | MR | Zbl

[10] Bolte J., Steil G., Steiner F., “Arithmetical chaos and violation of universality in energy level statistics”, Physical Review Letters, 69 (1992), 2188–2191 | DOI | MR | Zbl

[11] Booker A. R., “A test for identifying Fourier coefficients of automorphic forms and applications to Kloosterman sums”, Experimental Mathematics, 9 (2000), 571–581 | DOI | MR | Zbl

[12] Bryson A. E., Control of spacecraft and aircraft, Princeton University Press, Princeton, 1994 | MR

[13] Heijhal D. A., The Selberg trace formula for ${\rm PSL}(2,\mathbb{R})$, Lecture Notes in Mathematics, 1001, Springer, Berlin, 1983 | DOI | MR

[14] Heijhal D. A., Rackner B. N., “On the topography of Maass vaveforms for ${\rm PSL}(2,\mathbb{Z})$”, Experimental Mathematics, 1 (1992), 275–305 | DOI | MR

[15] Gil A., Seguna J., Temme N. M., “Computation of the modified Bessel functions of the third kind of imaginary orders: uniform Airy-type asymptotic expansions”, Journal Computational and Applied Mathematics, 153 (2003), 225–234 | DOI | MR | Zbl

[16] Iwaniec H., Introduction to the spectral theory of automorphic forms, Revista Matematica Iberoamericana, Madrid, 1995 | MR | Zbl

[17] Shilin I. A., Junesang Choi, “Certain connections between the spherical and hyperbolic bases on the cone and formulas for related special functions”, Integral Transforms and Special Functions, 25:5 (2014), 374–383 | DOI | MR | Zbl

[18] Shilin I. A., Junesang Choi, “Some connections between the spherical and parabolic bases on the cone expressed in terms of the Macdonald functions”, Abstract and Applied Analysis, 2014, 741079 | MR | Zbl

[19] I. A. Shilin, J. Choi, J. W. Lee, “Some integrals involving Coulomb functions associated with the three-dimensional proper Lorentz group”, AIMS Mathematics, 5:6 (2020), 5664–5682 | DOI | MR | Zbl

[20] Shilin I. A., Nizhnikov A. I., “Some formulas for Legendre functions induced by the Poisson transform”, Acta Polytechnica, 51:1 (2011), 70–73

[21] Shilin I. A., Nizhnikov A. I., “Some formulas for Legendre functions related to the Poisson transform and Lorentz group representation”, Journal of Physics. Conference series, 356 (2012), 012020 | DOI

[22] Yakubivich S. V., Index transforms, World Scientific, Singapore, 1996 | MR

[23] Zhao P., “Quantum variance of Maass-Hecke cusp forms”, Communications in Mathematical Physics, 297 (2010), 475–514 | DOI | MR | Zbl