Determination of the inhomogeneity laws of a cylinder covering located in a plane waveguide for providing minimum sound reflection
Čebyševskij sbornik, Tome 21 (2020) no. 4, pp. 354-368.

Voir la notice de l'article provenant de la source Math-Net.Ru

The article considers the inverse problem on determination of the inhomogeneity laws of an elastic coating of an absolutely rigid cylinder located in a plane waveguide, one boundary of which is absolutely hard and the other is acoustically soft. It is believed that the waveguide filled by ideal fluid. The harmonic sound pressure wave excited by a given distribution sources on the section of the waveguide located on the final distance from the axis of the cylinder is propagated along the walls of the waveguide on normal to the surface of the cylindrical body. The inhomogeneity parameters for providing minimum sound reflection are determined. The solution of the inverse problem is obtained based on the solution of the direct problem diffraction. Dependences of the density and elastic moduli of the coating material from the radial coordinate are approximated by polynomials of the third degrees. Functionals defined on the class of cubic functions and expressing the average intensity of sound scattering in a given section of the waveguide at a fixed frequency or at some frequency range are built. The minimization of the functionals is done with using the genetic algorithm. Analytical description of the optimal inhomogeneity laws of an cylinder coating are received to ensure minimal sound reflection.
Keywords: diffraction, sound waves, elastic cylinder, non-uniform elastic coating, inhomogeneity laws, plane waveguide.
@article{CHEB_2020_21_4_a29,
     author = {L. A. Tolokonnikov and A. E. Belkin},
     title = {Determination of the inhomogeneity laws of a cylinder covering located in a plane waveguide for providing minimum sound reflection},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {354--368},
     publisher = {mathdoc},
     volume = {21},
     number = {4},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2020_21_4_a29/}
}
TY  - JOUR
AU  - L. A. Tolokonnikov
AU  - A. E. Belkin
TI  - Determination of the inhomogeneity laws of a cylinder covering located in a plane waveguide for providing minimum sound reflection
JO  - Čebyševskij sbornik
PY  - 2020
SP  - 354
EP  - 368
VL  - 21
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2020_21_4_a29/
LA  - ru
ID  - CHEB_2020_21_4_a29
ER  - 
%0 Journal Article
%A L. A. Tolokonnikov
%A A. E. Belkin
%T Determination of the inhomogeneity laws of a cylinder covering located in a plane waveguide for providing minimum sound reflection
%J Čebyševskij sbornik
%D 2020
%P 354-368
%V 21
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2020_21_4_a29/
%G ru
%F CHEB_2020_21_4_a29
L. A. Tolokonnikov; A. E. Belkin. Determination of the inhomogeneity laws of a cylinder covering located in a plane waveguide for providing minimum sound reflection. Čebyševskij sbornik, Tome 21 (2020) no. 4, pp. 354-368. http://geodesic.mathdoc.fr/item/CHEB_2020_21_4_a29/

[1] Ivanov V. P., “Analiz polya difraktsii na tsilindre s perforirovannym pokrytiem”, Akusticheskii zhurn., 52:6 (2006), 791–798

[2] Bobrovnitskii Yu. I., “Nerasseivayuschee pokrytie dlya tsilindra”, Akusticheskii zhurn., 54:6 (2008), 879–889

[3] Bobrovnitskii Yu. I., Morozov K. D., Tomilina T. M., “Periodicheskaya poverkhnostnaya struktura s ekstremalnymi akusticheskimi svoistvami”, Akusticheskii zhurn., 56:2 (2010), 147–151

[4] Kosarev O. I., “Difraktsiya zvuka na uprugoi tsilindricheskoi obolochke s pokrytiem”, Problemy mashinostroeniya i nadezhnosti mashin, 46:1 (2012), 34–37

[5] Romanov A. G., Tolokonnikov L. A., “Rasseyanie zvukovykh voln tsilindrom s neodnorodnym uprugim pokrytiem”, Prikladnaya matematika i mekhanika, 75:5 (2011), 850–857 | MR | Zbl

[6] Tolokonnikov L. A., “Difraktsiya tsilindricheskikh zvukovykh voln na tsilindre s neodnorodnym uprugim pokrytiem”, Izvestiya Tulskogo gos. un-ta. Estestvennye nauki, 2013, no. 3, 202–208

[7] Tolokonnikov L. A., “Rasseyanie naklonno padayuschei ploskoi zvukovoi volny uprugim tsilindrom s neodnorodnym pokrytiem”, Izvestiya Tulskogo gos. un-ta. Estestvennye nauki, 2013, no. 2-2, 265–274

[8] Larin N. V., Tolokonnikov L. A., “Rasseyanie ploskoi zvukovoi volny uprugim tsilindrom s diskretno-sloistym pokrytiem”, Prikladnaya matematika i mekhanika, 79:2 (2015), 242–250 | Zbl

[9] Larin N. V., “Difraktsiya ploskoi zvukovoi volny na termouprugom tsilindre s nepreryvno-neodnorodnym pokrytiem”, Izvestiya Tulskogo gos. un-ta. Tekhnicheskie nauki, 2017, no. 6, 154–173

[10] Larin N. V., “O vliyanii nepreryvno-neodnorodnogo pokrytiya na zvukootrazhayuschie svoistva termouprugogo tsilindra”, Izvestiya Tulskogo gos. un-ta. Tekhnicheskie nauki, 2017, no. 9-1, 395–403

[11] Larin N. V., Skobeltsyn S. A., Tolokonnikov L. A., “Ob opredelenii lineinykh zakonov neodnorodnosti tsilindricheskogo uprugogo sloya, imeyuschego naimenshee otrazhenie v zadannom napravlenii pri rasseyanii zvuka”, Izvestiya Tulskogo gos. un-ta. Estestvennye nauki, 2014, no. 4, 54–62

[12] Tolokonnikov L. A., Larin N. V., Skobeltsyn S. A., “Modelirovanie neodnorodnogo pokrytiya uprugogo tsilindra s zadannymi zvukootrazhayuschimi svoistvami”, Prikladnaya mekhanika i tekhnicheskaya fizika, 2017, no. 4, 189–199 | Zbl

[13] Tolokonnikov L. A., “Opredelenie zakonov neodnorodnosti pokrytiya uprugogo tsilindra s tsilindricheskoi polostyu, obespechivayuschikh minimalnoe zvukootrazhenie”, Izvestiya Tulskogo gos. un-ta. Tekhnicheskie nauki, 2017, no. 4, 67–81

[14] Tolokonnikov L. A., “Difraktsiya ploskoi zvukovoi volny na uprugom tsilindre s neodnorodnym pokrytiem, nakhodyaschemsya vblizi ploskoi poverkhnosti”, Izvestiya Tulskogo gos. un-ta. Tekhnicheskie nauki, 2018, no. 9, 276–289

[15] Tolokonnikov L. A., “Difraktsiya zvukovykh voln na uprugom tsilindre s neodnorodnym pokrytiem v ploskom volnovode s akusticheski myagkimi granitsami”, Izvestiya Tulskogo gos. un-ta. Estestvennye nauki, 2015, no. 1, 43–53

[16] Tolokonnikov L. A., “Difraktsiya zvukovykh voln na uprugom tsilindre s neodnorodnym pokrytiem v ploskom volnovode s absolyutno zhestkimi granitsami”, Izvestiya Tulskogo gos. un-ta. Estestvennye nauki, 2015, no. 2, 76–83

[17] Tolokonnikov L. A., “Rasseyanie zvukovykh voln tsilindrom s radialno-neodnorodnym uprugim pokrytiem v ploskom volnovode”, Chebyshevckii sbornik, 20:1 (2019), 270–281

[18] Tolokonnikov L. A., Larin N. V., “Matematicheskoe modelirovanie neodnorodnogo pokrytiya uprugogo tsilindra, nakhodyaschegosya v ploskom volnovode”, Izvestiya Tulskogo gos. un-ta. Tekhnicheskie nauki, 2018, no. 9, 315–323

[19] Rutkovskaya D., Pilinskii M., Rutkovskii L., Neironnye seti, geneticheskie algoritmy i nechetkie sistemy, Goryachaya liniya - Telekom, M., 2006, 452 pp.