N.~M.~Korobov, V.~I.~Nechaev, S.~B.~Stechkin, N.~M.~Dobrovolsky and the revival of the Tula School of number theory
Čebyševskij sbornik, Tome 21 (2020) no. 4, pp. 196-217.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper presents many unknown facts from the history of the Tula school of number theory. It is shown that the main role in the revival of the Tula school of number theory was played by professors N. M. Korobov, V. I. Nechaev, S. B. Stechkin, and N. M. Dobrovolsky. The role of these main participants in the revival of the scientific school of number theory in Tula is revealed. Various details of the relationship between these participants in the process of reviving the Tula school of number theory are given. To characterize the activities of the Tula scientific school on number theory after its revival, an overview of the main directions of its work over the past 45 years and a brief description of the work done is provided. The article provides a bibliography of the main scientific publications on the number-theoretic method in approximate analysis by N. M. Korobov and N. M. Dobrovolsky, on which the revival of the Tula school of number theory and its subsequent functioning over the past 45 years were based.
Keywords: N. M. Korobov, V. I. Nechaev, S. B. Stechkin, N. M. Dobrovolsky, the Tula school of number theory, numerical-theoretic method in approximate analysis, lattices, grids, quadrature formulas, interpolation formulas, hyperbolic Zeta function of lattices, Zeta functions of monoids of natural numbers, uniform distribution, metric space of lattices, smooth variety of lattices, approximation of algebraic numbers.
@article{CHEB_2020_21_4_a17,
     author = {I. Yu. Rebrova and V. N. Chubarikov},
     title = {N.~M.~Korobov, {V.~I.~Nechaev,} {S.~B.~Stechkin,} {N.~M.~Dobrovolsky} and the revival of the {Tula} {School} of number theory},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {196--217},
     publisher = {mathdoc},
     volume = {21},
     number = {4},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2020_21_4_a17/}
}
TY  - JOUR
AU  - I. Yu. Rebrova
AU  - V. N. Chubarikov
TI  - N.~M.~Korobov, V.~I.~Nechaev, S.~B.~Stechkin, N.~M.~Dobrovolsky and the revival of the Tula School of number theory
JO  - Čebyševskij sbornik
PY  - 2020
SP  - 196
EP  - 217
VL  - 21
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2020_21_4_a17/
LA  - ru
ID  - CHEB_2020_21_4_a17
ER  - 
%0 Journal Article
%A I. Yu. Rebrova
%A V. N. Chubarikov
%T N.~M.~Korobov, V.~I.~Nechaev, S.~B.~Stechkin, N.~M.~Dobrovolsky and the revival of the Tula School of number theory
%J Čebyševskij sbornik
%D 2020
%P 196-217
%V 21
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2020_21_4_a17/
%G ru
%F CHEB_2020_21_4_a17
I. Yu. Rebrova; V. N. Chubarikov. N.~M.~Korobov, V.~I.~Nechaev, S.~B.~Stechkin, N.~M.~Dobrovolsky and the revival of the Tula School of number theory. Čebyševskij sbornik, Tome 21 (2020) no. 4, pp. 196-217. http://geodesic.mathdoc.fr/item/CHEB_2020_21_4_a17/

[1] N. K. Bari, S. B. Stechkin, “Nailuchshie priblizheniya i differentsialnye svoistva dvukh sopryazhennykh funktsii”, Tr. MMO, 5, GITTL, M., 1956, 483–522

[2] S. M. Voronin, “O kvadraturnykh formulakh”, Izv. RAN. Ser. mat., 58:5 (1994), 189–194

[3] S. M. Voronin, “O postroenii kvadraturnykh formul”, Izv. RAN. Ser. mat., 59:4 (1995) | MR | Zbl

[4] S. M. Voronin, N. Temirgaliev, “O kvadraturnykh formulakh, svyazannykh s divizorami polya gaussovykh chisel”, Mat. zametki, 46:2 (1989), 34–41 | Zbl

[5] S. S. Demidov, E. A. Morozova, V. N. Chubarikov, I. Yu. Rebrova, I. N. Balaba, N. N. Dobrovolskii, N. M. Dobrovolskii, L. P. Dobrovolskaya, A. V. Rodionov, O. A. Pikhtilkova, “Teoretiko-chislovoi metod v priblizhennom analize”, Chebyshevskii sbornik, 18:4 (64) (2017), 6–85 | DOI | MR | Zbl

[6] N. M. Dobrovolskii, “Effektivnoe dokazatelstvo teoremy Rota o kvadratichnom otklonenii”, UMN, 1984, 155–156 | Zbl

[7] N. M. Dobrovolskii, Otsenki otklonenii modifitsirovannykh setok Khemmersli–Rota, Dep. v VINITI 23.02.84, No 1365-84

[8] N. M. Dobrovolskii, Otsenki otklonenii obobschennykh parallelepipedalnykh setok, Dep. v VINITI 24.08.84, No 6089-84

[9] N. M. Dobrovolskii, Giperbolicheskaya dzeta funktsiya reshetok, Dep. v VINITI 24.08.84, No 6090-84

[10] N. M. Dobrovolskii, O kvadraturnykh formulakh na klassakh $E_s^\alpha(c)$ i $R_s^\alpha(c)$, Dep. v VINITI 24.08.84, No 6091-84

[11] N. M. Dobrovolskii, Teoretiko-chislovye setki i ikh prilozheniya, Dis. ... kand. fiz. mat. nauk, Tula, 1984 | Zbl

[12] N. M. Dobrovolskii, Teoretiko-chislovye setki i ikh prilozheniya, Avtoref. dis. ... kand. fiz. mat. nauk, M., 1985

[13] N. M. Dobrovolskii, “Teoretiko-chislovye setki i ikh prilozheniya”, Teoriya chisel i ee prilozheniya, Tez. dokl. Vsesoyuz. konf. (Tbilisi, 1985), 67–70 | MR | Zbl

[14] N. M. Dobrovolskii, “Gruppy preobrazovanii mnogomernykh setok”, Sovremennye problemy teorii chisel, Tez. dokl. Mezhdunar. konf. (Tula, 1993), 46 | Zbl

[15] N. M. Dobrovolskii, “Srednie po orbitam mnogomernykh setok”, Mat. zametki, 58:1 (1995), 48–66 | MR | Zbl

[16] N. M. Dobrovolskii, “Means over of Multidimensional Lattices”, Mathematical Notes, 58:1 (1995), 710–721 | DOI | MR | Zbl

[17] N. M. Dobrovolskii, Mnogomernye teoretiko-chislovye setki i reshetki i ikh prilozheniya, Dis. ... dok. fiz.-mat. nauk, M., 2000

[18] N. M. Dobrovolskii, “Mnogomernye teoretiko-chislovye setki i reshetki i ikh prilozheniya k priblizhennomu analizu”, Sb. IV Mezhdunarodnaya konferentsiya "Sovremennye problemy teorii chisel i ee prilozheniya" posvyaschennaya 180-letiyu P. L. Chebysheva i 110-letiyu I. M. Vinogradova (Tula, 10–15 sentyabrya, 2001), v. I, Aktualnye problemy, MGU, M., 2002, 54–80

[19] N. M. Dobrovolskii, Mnogomernye teoretiko-chislovye setki i reshetki i ikh prilozheniya, Izd-vo Tul. gos. ped. un-ta im. L. N. Tolstogo, Tula, 2005

[20] N. M. Dobrovolskii, “O sovremennykh problemakh teorii giperbolicheskoi dzeta-funktsii reshetok”, Chebyshevskii sb., 16:1 (2015), 176–190 | MR | Zbl

[21] N. M. Dobrovolskii, N. M. Korobov, “Optimalnye koeffitsienty dlya kombinirovannykh setok”, Chebyshevskii sbornik, 2 (2001), 41–53 | MR | Zbl

[22] N. M. Dobrovolskii, N. M. Korobov, “Ob otsenke pogreshnosti kvadraturnykh formul s optimalnymi parallelepipedalnymi setkami”, Chebyshevskii sbornik, 3:1(3) (2002), 41–48 | MR | Zbl

[23] N. M. Dobrovolskii, I. Yu. Rebrova, A. E. Ustyan, F. V. Podsypanin, E. V. Podsypanin, “K 105-letnemu yubileyu Vladimira Dmitrievicha Podsypanina (16.01.1910-11.10.1968)”, Chebyshevckii sbornik, 16:1 (2015), 301–316 | MR | Zbl

[24] N. M. Dobrovolskii, I. Yu. Rebrova, A. E. Ustyan, F. V. Podsypanin, E. V. Podsypanin, “Tulskaya shkola teorii chisel (k 105-letnemu yubileyu Vladimira Dmitrievicha Podsypanina (16.01.1910 11.10.1968) i 65-letiyu Tulskoi shkoly teorii chisel)”, Algebra, teoriya chisel i diskretnaya geometriya: sovremennye problemy i prilozheniya, Materialy XIII Mezhdunarodnoi konferentsii, Dopolnitelnyi tom, Tulskii gosudarstvennyi pedagogicheskii universitet im. L. N. Tolstogo, 2015, 20–85 | MR

[25] N. M. Korobov, “Priblizhennoe vychislenie kratnykh integralov s pomoschyu metodov teorii chisel”, DAN SSSR, 115:6 (1957), 1062–1065 | Zbl

[26] N. M. Korobov, “O priblizhennom vychislenii kratnykh integralov”, DAN SSSR, 124:6 (1959), 1207–1210 | Zbl

[27] N. M. Korobov, “O priblizhennom reshenii integralnykh uravnenii”, DAN SSSR, 128:2 (1959), 235–238 | MR | Zbl

[28] N. M. Korobov, “O nekotorykh teoretiko-chislovykh metodakh priblizhennogo vychisleniya kratnykh integralov. Rezyume dokl. na zasedanii Mosk. mat. ob-va”, UMN, 14:2 (1959), 227–230

[29] N. M. Korobov, “Vychislenie kratnykh integralov metodom optimalnykh koeffitsientov”, Vestn. Mosk. un-ta, 1959, no. 4, 19–25

[30] N. M. Korobov, “Svoistva i vychislenie optimalnykh koeffitsientov”, DAN SSSR, 132:5 (1960), 1009–1012 | Zbl

[31] N. M. Korobov, “Primenenie teoretiko-chislovykh setok v integralnykh uravneniyakh i interpolyatsionnykh formulakh”, Sbornik statei. Posvyaschaetsya akademiku Mikhailu Alekseevichu Lavrentevu k ego shestidesyatiletiyu, Tr. MIAN SSSR, 60, Izd-vo AN SSSR, M.., 1961, 195–210

[32] N. M. Korobov, “O primenenii teoretiko-chislovykh setok”, Vychislitelnye metody i programmirovanie, Sb. Mosk. un., 1962, 80–102

[33] N. M. Korobov, “O teoretiko-chislovykh metodakh v priblizhennom analize”, Voprosy vychislitelnoi matematiki i vychislitelnoi tekhniki, Mashgiz, M., 1963

[34] Korobov N. M., O nekotorykh zadachakh teorii chisel, voznikayuschikh iz potrebnostei priblizhennogo analiza, Soobschenie na IV matematicheskom s'ezde (ne opubl.)

[35] N. M. Korobov, Teoretiko-chislovye metody v priblizhennom analize, Fizmatgiz, M., 1963

[36] N. M. Korobov, “O nekotorykh voprosakh teorii diofantovykh priblizhenii”, UMN, 22:3 (1967), 83–118 | MR | Zbl

[37] N. M. Korobov, “O vychislenii optimalnykh koeffitsientov”, DAN SSSR, 267:2 (1982), 289–292 | MR | Zbl

[38] Korobov N. M., “Ob odnoi otsenke A. O. Gelfonda”, Vestn. MGU. Ser. 1. Matematika, mekhanika, 1983, no. 3, 3–7 | MR | Zbl

[39] N. M. Korobov, “O nekotorykh voprosakh teorii diofantovykh priblizhenii”, Tezisy dokladov vsesoyuznoi konferentsii "Teoriya transtsendentnykh chisel i ee prilozheniya", 1983, 62

[40] N. M. Korobov, Trigonometricheskie summy i ikh prilozheniya, Nauka, M., 1989

[41] N. M. Korobov, “Kvadraturnye formuly s kombinirovannymi setkami”, Matematicheskie zametki, 55:2 (1994), 83–90 | Zbl

[42] N. M. Korobov, “O teoretiko-chislovykh metodakh priblizhennogo integrirovaniya”, Istoriko-matem. issledovaniya, XXXV, SPb., 1994, 285–301 | Zbl

[43] N. M. Korobov, “Spetsialnye polinomy i ikh prilozheniya”, Diofantovy priblizheniya, Matem. zapiski, 2, 1996, 77–89

[44] N. M. Korobov, “O konechnykh tsepnykh drobyakh”, UMN, 52:3 (1998), 167–168

[45] N. M. Korobov, “O teoretiko-chislovykh interpolyatsionnykh formulakh”, Istoriko-matem. issledovaniya, 6, "Yanus i K", M., 2001, 266–276

[46] N. M. Korobov, “O nekotorykh svoistvakh spetsialnykh polinomov”, Chebyshevskii sbornik, 2001, no. 1, Trudy IV Mezhdunarodnoi konferentsii "Sovremennye problemy teorii chisel i ee prilozheniya", 40–49 | Zbl

[47] N. M. Korobov, “Ob odnoi otsenke v metode optimalnykh koeffitsientov”, Tezisy IV Vserossiiskoi konferentsii "Sovremennye problemy matematiki, mekhaniki, informatiki" (Tula, 2002), 2002, 39–40

[48] N. M. Korobov, Teoretiko-chislovye metody v priblizhennom analize, vtoroe izdanie, MTsNMO, M., 2004, 288 pp.

[49] N. M. Korobov, N. M. Dobrovolskii, “Kriterii optimalnosti i algoritmy poiska optimalnykh koeffitsientov”, Chebyshevskii sbornik, 8:4(24) (2007), 105–128 | Zbl

[50] K. K. Frolov, “Otsenki sverkhu pogreshnosti kvadraturnykh formul na klassakh funktsii”, DAN SSSR, 231:4 (1976), 818–821 | MR | Zbl

[51] K. K. Frolov, Kvadraturnye formuly na klassakh funktsii, Dis. ... kand. fiz.-mat. nauk, VTs AN SSSR, M., 1971 | MR

[52] V. N. Chubarikov, V. G. Chirskii, E. I. Deza, Yu. N. Baulina, L. V. Kotova, E. V. Neiskashova, V. S. Vankova, N. M. Dobrovolskii, I. Yu. Rebrova, A. L. Roschenya, “Vasilii Ilich Nechaev. K 100-letnemu yubileyu”, Chebyshevckii sbornik, 21:1 (2020), 404–414 | DOI | MR

[53] K. F. Roth, “On irregularities of distribution”, Mathematika, 1 (1954), 73–79 | DOI | MR | Zbl

[54] K. F. Roth, “On irregularities of distribution IV”, Acta Arithm., 37 (1980), 65–75 | MR

[55] Nauchnaya elektronnaya biblioteka eLIBRARY.RU, https://www.elibrary.ru/title_about.asp?id=32553

[56] Obscherossiiskii portal Math-Net.Ru, http://www.mathnet.ru/index.phtml/?option_lang=rus

[57] Cait zhurnala Chebyshevskii sbornik, https://www.chebsbornik.ru/jour/index