The regularity of the transform of Laplace and the transform of Fourier
Čebyševskij sbornik, Tome 21 (2020) no. 4, pp. 162-170.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper proves the regularity in a neighborhood of zero of the Laplace transform of the Fourier transform of an even function obtained from an odd function regular in a neighborhood of the real axis by changing the parity. This fact implies that the sine and cosine of the Fourier transforms are commutable up to the sign.
Keywords: Fourier transform, sine and cosine Fourier transform transposition, Laplace transform regularity of Fourier transform.
@article{CHEB_2020_21_4_a15,
     author = {A. V. Pavlov},
     title = {The regularity of the transform of {Laplace} and the transform of {Fourier}},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {162--170},
     publisher = {mathdoc},
     volume = {21},
     number = {4},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2020_21_4_a15/}
}
TY  - JOUR
AU  - A. V. Pavlov
TI  - The regularity of the transform of Laplace and the transform of Fourier
JO  - Čebyševskij sbornik
PY  - 2020
SP  - 162
EP  - 170
VL  - 21
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2020_21_4_a15/
LA  - ru
ID  - CHEB_2020_21_4_a15
ER  - 
%0 Journal Article
%A A. V. Pavlov
%T The regularity of the transform of Laplace and the transform of Fourier
%J Čebyševskij sbornik
%D 2020
%P 162-170
%V 21
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2020_21_4_a15/
%G ru
%F CHEB_2020_21_4_a15
A. V. Pavlov. The regularity of the transform of Laplace and the transform of Fourier. Čebyševskij sbornik, Tome 21 (2020) no. 4, pp. 162-170. http://geodesic.mathdoc.fr/item/CHEB_2020_21_4_a15/

[1] Pavlov A. V., Distsipliny s prioritetom korotkim trebovaniyam i identichnoe osluzhivanie, FGBOU VPO MGTU MIREA, M., 2013, 119 pp. http://catalog.inforeg.ru/Inet/GetEzineByID/300386

[2] Kolmogorov A. N., Fomin S. V., Elementy teorii funktsii i funktsionalnogo analiza, Nauka, M., 1976, 544 pp. | MR

[3] Pavlov A. V., “The Dirichlet problem and disappearance of the imaginary part of the Laplace transform on the imaginary axis in connection with the Fourier, Laplace operators”, The 8th Int. Conferen. on Differential and Functional Differential Equations (August 13–20, 2017), RUDN Universit., Math. Inst. nam. Steklov, M., 137

[4] Pavlov A. V., “Identical service and the odd or even transform of Laplace”, Conferen. Anal. and comp.meth. in probab. theor. and its appl., ACMPT 2017 (23–27 okt., 2017, Moscow), Moscow University nam M. V.Lomonosov and RUDN., M., 2017, 31–35

[5] Pavlov A. V., “The correctness of geometrical methods in the theorem of Fermat; the transform of Laplace”, Berlin. 7th Eur. Congr. of Math. (July 18–22, Tech. Univers. Section.Alg. and Comp. Geom.), 84 (Poster PS-03 sec.)

[6] Pavlov A. V., “Application of regularity of the double Laplace transform to the general properties of the integral Fourier transform”, Intern. Confer. Math. theory of optimal control, Materials of Intern. Conferen. dedic. to the 90th birthday of Acad. R.V. Gamkrelidze (june 1–2, 2017), Math. Inst. nam. Steklov. (KSA Innov.Group), M., 2017, 113–115

[7] Pavlov A. V., “Preobrazovanie Fure i formula obrascheniya preobrazovaniya Laplasa”, Mat. zametki, 90:6 (2011), 792–796

[8] Pavlov A. V., “About the equality of the transform of Laplace to the transform of Fourier”, Issues of Analysis, 23:1 (2016), 21–30 | DOI | MR | Zbl

[9] Pavlov A. V., “Dostovernoe prognozirovanie funktsii, predstavimykh v vide preobrazovaniya Fure ili Laplasa”, Vestnik MGTU MIREA, 3:2 (2014), 78–85

[10] Lavrentev M. A., Shabat B. V., Metody teorii funktsii kompleksnogo peremennogo, Nauka, M., 1987, 688 pp. | MR

[11] Fichtenholz G. M., Kurs differentsialnogo i integralnogo ischisleniya, v. II, Nauka, M., 1969, 800 pp.

[12] Arkhipov G. I., Chubarikov V. N., “O matematicheskikh rabotakh professora A. A. Karatsuby”, Trudy MIAN, 218, 1997, 7–19 | Zbl

[13] Lykov A. A., Malyshev V. A., Chubarikov V. N., “Regulyarnye kontinualnye sistemy tochechnykh chastits. I: Sistemy bez vzaimodeistviya”, Chebyshevskii sb., 17:3 (2016), 148–165 | DOI | MR | Zbl