Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHEB_2020_21_4_a12, author = {S. Malev and C. Pines}, title = {The images of multilinear non-associative polynomials evaluated on a rock-paper-scissors algebra with unit over an arbitrary field and its subalgebras}, journal = {\v{C}eby\v{s}evskij sbornik}, pages = {129--139}, publisher = {mathdoc}, volume = {21}, number = {4}, year = {2020}, language = {en}, url = {http://geodesic.mathdoc.fr/item/CHEB_2020_21_4_a12/} }
TY - JOUR AU - S. Malev AU - C. Pines TI - The images of multilinear non-associative polynomials evaluated on a rock-paper-scissors algebra with unit over an arbitrary field and its subalgebras JO - Čebyševskij sbornik PY - 2020 SP - 129 EP - 139 VL - 21 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CHEB_2020_21_4_a12/ LA - en ID - CHEB_2020_21_4_a12 ER -
%0 Journal Article %A S. Malev %A C. Pines %T The images of multilinear non-associative polynomials evaluated on a rock-paper-scissors algebra with unit over an arbitrary field and its subalgebras %J Čebyševskij sbornik %D 2020 %P 129-139 %V 21 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/CHEB_2020_21_4_a12/ %G en %F CHEB_2020_21_4_a12
S. Malev; C. Pines. The images of multilinear non-associative polynomials evaluated on a rock-paper-scissors algebra with unit over an arbitrary field and its subalgebras. Čebyševskij sbornik, Tome 21 (2020) no. 4, pp. 129-139. http://geodesic.mathdoc.fr/item/CHEB_2020_21_4_a12/
[1] Belov A., Malev S., Rowen L., “The images of noncommutative polynomials evaluated on $2\times 2$ matrices”, Proc. Amer. Math. Soc., 140 (2012), 465–478 | DOI | MR | Zbl
[2] Belov A., Malev S., Rowen L., “The images of multilinear polynomials evaluated on $3\times 3$ matrices”, Proc. Amer. Math. Soc., 144 (2016), 7–19 | DOI | MR | Zbl
[3] Belov A., Malev S., Rowen L., “Power-central polynomials on matrices”, Journal of Pure and Applied Algebra, 220 (2016), 2164–2176 | DOI | MR | Zbl
[4] Belov A., Malev S., Rowen L., “The images of Lie polynomials evaluated on matrices”, Communications in Algebra, 45:11 (2017), 4801–4808 | DOI | MR | Zbl
[5] Belov A., Malev S., Rowen L., Yavich R., “Evaluations of noncommutative polynomials on algebras: Methods and problems, and the L'vov-Kaplansky Conjecture”, SIGMA, 16 (2020), 071, 61 pp. | MR | Zbl
[6] Brešar M., Commutators and images of noncommutative polynomials, 2020, arXiv: 2001.10392 | MR
[7] Dnestrovskaya tetrad. Nereshennye problemy teorii kolets i modulei, Izd-vo IM SO RAN, Novosibirsk, 1993
[8] Gordeev N.L., Kunyavskii B.E., Plotkin E. B., “Geometriya verbalnykh uravnenii v prostykh algebraicheskikh gruppakh nad spetsialnymi polyami”, UMN, 73:5(443) (2018), 3–52 | DOI | MR | Zbl
[9] Malev S., “The images of noncommutative polynomials evaluated on $2\times 2$ matrices over an arbitrary field”, Journal of Algebra and its Applications, 13:6 (2014), 145004, 12 pp. | DOI | MR
[10] Malev S., “The images of noncommutative polynomials evaluated on the Quaternion algebra”, Journal of Algebra and its Applications, 2021, 8 pp. | DOI | MR
[11] Shalev A., “Commutators, words, conjugacy classes and character methods”, Turkish J. Math., 31 (2007), 131–148 | MR | Zbl
[12] Shalev A., “Word maps, conjugacy classes, and a noncommutative Waring-type theorem”, Annals of Math., 170 (2009), 1383–1416 | DOI | MR | Zbl
[13] Shalev A., “Some results and problems in the theory of word maps”, Erdös Centennial, Bolyai Soc. Math. Studies, 25, eds. L. Lovász, I. Ruzsa, V. T. Sós, D. Palvolgyi, Springer, 2013, 611–649 | DOI | MR | Zbl
[14] Zhevlakov K., Slinko A., Shestakov I., Shirshov A., Koltsa, blizkie k assotsiativnym, Nauka, M., 1978, 432 pp. | MR