The images of multilinear non-associative polynomials evaluated on a rock-paper-scissors algebra with unit over an arbitrary field and its subalgebras
Čebyševskij sbornik, Tome 21 (2020) no. 4, pp. 129-139.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let ${\mathbb F}$ be an arbitrary field. We consider a commutative, non-associative, $4$-dimensional algebra ${\mathfrak M}$ of the rock, the paper and the scissors with unit over ${\mathbb F}$ and we prove that the image over ${\mathfrak M}$ of every non-associative multilinear polynomial over ${\mathbb F}$ is a vector space. The same question we consider for two subalgebras: an algebra of the rock, the paper and the scissors without unit, and an algebra of trace zero elements with zero scalar part. Moreover in this paper we consider the questions of possible eveluations of homogeneous polynomials on these algebras.
Keywords: L'vov-Kaplansky Conjecture, multilinear polynomials, non-associative algebras, polynomial identities.
@article{CHEB_2020_21_4_a12,
     author = {S. Malev and C. Pines},
     title = {The images of multilinear non-associative polynomials evaluated on a rock-paper-scissors algebra with unit over an arbitrary field and its subalgebras},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {129--139},
     publisher = {mathdoc},
     volume = {21},
     number = {4},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2020_21_4_a12/}
}
TY  - JOUR
AU  - S. Malev
AU  - C. Pines
TI  - The images of multilinear non-associative polynomials evaluated on a rock-paper-scissors algebra with unit over an arbitrary field and its subalgebras
JO  - Čebyševskij sbornik
PY  - 2020
SP  - 129
EP  - 139
VL  - 21
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2020_21_4_a12/
LA  - en
ID  - CHEB_2020_21_4_a12
ER  - 
%0 Journal Article
%A S. Malev
%A C. Pines
%T The images of multilinear non-associative polynomials evaluated on a rock-paper-scissors algebra with unit over an arbitrary field and its subalgebras
%J Čebyševskij sbornik
%D 2020
%P 129-139
%V 21
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2020_21_4_a12/
%G en
%F CHEB_2020_21_4_a12
S. Malev; C. Pines. The images of multilinear non-associative polynomials evaluated on a rock-paper-scissors algebra with unit over an arbitrary field and its subalgebras. Čebyševskij sbornik, Tome 21 (2020) no. 4, pp. 129-139. http://geodesic.mathdoc.fr/item/CHEB_2020_21_4_a12/

[1] Belov A., Malev S., Rowen L., “The images of noncommutative polynomials evaluated on $2\times 2$ matrices”, Proc. Amer. Math. Soc., 140 (2012), 465–478 | DOI | MR | Zbl

[2] Belov A., Malev S., Rowen L., “The images of multilinear polynomials evaluated on $3\times 3$ matrices”, Proc. Amer. Math. Soc., 144 (2016), 7–19 | DOI | MR | Zbl

[3] Belov A., Malev S., Rowen L., “Power-central polynomials on matrices”, Journal of Pure and Applied Algebra, 220 (2016), 2164–2176 | DOI | MR | Zbl

[4] Belov A., Malev S., Rowen L., “The images of Lie polynomials evaluated on matrices”, Communications in Algebra, 45:11 (2017), 4801–4808 | DOI | MR | Zbl

[5] Belov A., Malev S., Rowen L., Yavich R., “Evaluations of noncommutative polynomials on algebras: Methods and problems, and the L'vov-Kaplansky Conjecture”, SIGMA, 16 (2020), 071, 61 pp. | MR | Zbl

[6] Brešar M., Commutators and images of noncommutative polynomials, 2020, arXiv: 2001.10392 | MR

[7] Dnestrovskaya tetrad. Nereshennye problemy teorii kolets i modulei, Izd-vo IM SO RAN, Novosibirsk, 1993

[8] Gordeev N.L., Kunyavskii B.E., Plotkin E. B., “Geometriya verbalnykh uravnenii v prostykh algebraicheskikh gruppakh nad spetsialnymi polyami”, UMN, 73:5(443) (2018), 3–52 | DOI | MR | Zbl

[9] Malev S., “The images of noncommutative polynomials evaluated on $2\times 2$ matrices over an arbitrary field”, Journal of Algebra and its Applications, 13:6 (2014), 145004, 12 pp. | DOI | MR

[10] Malev S., “The images of noncommutative polynomials evaluated on the Quaternion algebra”, Journal of Algebra and its Applications, 2021, 8 pp. | DOI | MR

[11] Shalev A., “Commutators, words, conjugacy classes and character methods”, Turkish J. Math., 31 (2007), 131–148 | MR | Zbl

[12] Shalev A., “Word maps, conjugacy classes, and a noncommutative Waring-type theorem”, Annals of Math., 170 (2009), 1383–1416 | DOI | MR | Zbl

[13] Shalev A., “Some results and problems in the theory of word maps”, Erdös Centennial, Bolyai Soc. Math. Studies, 25, eds. L. Lovász, I. Ruzsa, V. T. Sós, D. Palvolgyi, Springer, 2013, 611–649 | DOI | MR | Zbl

[14] Zhevlakov K., Slinko A., Shestakov I., Shirshov A., Koltsa, blizkie k assotsiativnym, Nauka, M., 1978, 432 pp. | MR