Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHEB_2020_21_4_a11, author = {A. A. Klyachin and V. A. Klyachin}, title = {Existence and uniqueness theorems for solutions of inverse problems of projective geometry for {3D} reconstruction from photographs}, journal = {\v{C}eby\v{s}evskij sbornik}, pages = {117--128}, publisher = {mathdoc}, volume = {21}, number = {4}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CHEB_2020_21_4_a11/} }
TY - JOUR AU - A. A. Klyachin AU - V. A. Klyachin TI - Existence and uniqueness theorems for solutions of inverse problems of projective geometry for 3D reconstruction from photographs JO - Čebyševskij sbornik PY - 2020 SP - 117 EP - 128 VL - 21 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CHEB_2020_21_4_a11/ LA - ru ID - CHEB_2020_21_4_a11 ER -
%0 Journal Article %A A. A. Klyachin %A V. A. Klyachin %T Existence and uniqueness theorems for solutions of inverse problems of projective geometry for 3D reconstruction from photographs %J Čebyševskij sbornik %D 2020 %P 117-128 %V 21 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/CHEB_2020_21_4_a11/ %G ru %F CHEB_2020_21_4_a11
A. A. Klyachin; V. A. Klyachin. Existence and uniqueness theorems for solutions of inverse problems of projective geometry for 3D reconstruction from photographs. Čebyševskij sbornik, Tome 21 (2020) no. 4, pp. 117-128. http://geodesic.mathdoc.fr/item/CHEB_2020_21_4_a11/
[1] Mikhailov A. P., Chibunichev A. G., Kurs lektsii po fotogrammetrii, MIIGAiK Rakurs, 2013
[2] Lobanov A. N., Kuprina N. T., Chumachenko Z. N., Fotogrammetriya, Nedra, M., 1984, 552 pp.
[3] Klyachin V. A., Grigoreva E. G., “Algoritm avtomaticheskogo opredeleniya parametrov orientatsii kamery v prostranstve na osnove kharakternykh elementov fotosnimka”, Tendentsii razvitiya nauki i obrazovaniya, 45:6 (2018), 10–20
[4] Grigorieva E. G., Klyachin V. A., “Mathematical model of 3D maps and design of information system for its control”, Journal of Computational and Engineering Mathematics, 2016, no. 4, 51–58 | DOI
[5] Loktev D. A., Bykov Yu. A., Kovalenko N., “Ispolzovanie metoda analiza razmytiya izobrazheniya dlya opredeleniya vneshnikh defektov zheleznodorozhnogo puti”, Nauka i tekhnika transporta, 2016, no. 1, 69–75
[6] Loktev A. A., Loktev D. A., “Metod opredeleniya rasstoyaniya do ob'ekta putem analiza razmytiya ego izobrazheniya”, Vestnik MGSU, 2015, no. 6, 140–151
[7] Loktev A. A., Bakhtin V. F., Chernikov I. Yu., Loktev D. A., “Metodika opredeleniya vneshnikh defektov sooruzhenii putem analiza serii ego izobrazhenii v sisteme monitoringa”, Vestnik MGSU, 2015, no. 3, 7–16
[8] Loktev D. A., Loktev A. A., “Opredelenie rasstoyaniya do ob'ekta po serii ego izobrazhenii”, Matematika, informatika, estestvoznanie v ekonomike i obschestve, MIESEKO – 2015, trudy Vserossiiskoi nauchnoi konferentsii, v 2-kh tomakh, 2015, 52–57
[9] Loktev D. A., “Opredelenie geometricheskikh parametrov ob'ekta s pomoschyu analiza serii ego izobrazhenii”, T-Comm: Telekommunikatsii i transport, 9:5 (2015), 47–53
[10] Loktev A. A., Loktev D. A., “Otsenka izmerenii rasstoyaniya do ob'ekta pri issledovanii ego graficheskogo obraza”, Vestnik MGSU, 2015, no. 10, 54–65
[11] Loktev D. A., “Opredelenie parametrov ob'ekta po serii ego izobrazhenii v kompleksnoi sisteme monitoringa”, Put i putevoe khozyaistvo, 2015, no. 2, 31–33 | MR
[12] Nedzved O. V., Ablameiko S. V., Belotserkovskii A. M., “Opredelenie ob'emnykh kharakteristik dinamicheskikh meditsinskikh ob'ektov”, Iskusstvennyi intellekt, 2010, no. 4, 262–270
[13] Mirov S., Ivanov A., Ogurtsova T., Dyukendzhiev E., “Primenenie dannykh distantsionnogo zondirovaniya v podometrii”, 4-ya Mezhdunarodnaya konferentsiya polzovatelei TsFS PHOTOMOD, Sbornik tezisov dokladov, 2004, 25–28
[14] Jackson A. S. et al., “Large pose 3D face reconstruction from a single image via direct volumetric CNN regression”, 2017 IEEE International Conference on Computer Vision, ICCV, IEEE, 2017, 1031–1039
[15] Ferkova Z., Urbanova P., Cerny D., Zuzi M., Matula P., “Age and gender-based human face reconstruction from single frontal image”, Multimedia Tools and Applications, 2018, 1–26
[16] Pang G., Qiu R., Huang J., You S., Neumann U., “Automatic 3D industrial point cloud modeling and recognition”, 2015 14th IAPR international conference on machine vision applications, MVA, IEEE, 2015, 22–25 | DOI
[17] Kamyab S., Ghodsi A., Azimifar Z., Deep Structure for end-to-end inverse rendering, 2017, arXiv: 1708.08998
[18] Kamyab S., Zohreh A., End-to-end 3D shape inverse rendering of different classes of objects from a single input image, 2017, arXiv: 1711.05858
[19] Levina O. S., Voronin V. V., Pismenskova M. M., Gapon N. V., Kurkina A. V., “Analiz osnovnykh etapov metoda rekonstruktsii trekhmernykh modelei poverkhnostei ob'ektov”, Informatsionnye tekhnologii. Radioelektronika. Telekommunikatsii, 2016, no. 6-2, 25–32
[20] Tagirov T. S., “Algoritmicheskie metody resheniya zadach rekonstruktsii ob'ektov v 2D i 3D oblastyakh”, Sovremennye problemy nauki i obrazovaniya, 2014, no. 2
[21] Penczek P. A., “Fundamentals of three-dimensional reconstruction from projections”, Methods Enzymol., 482 (2010), 1–33 | DOI
[22] Molnar J., Frohlich R., Chetverikov D., Kato Z., “3D reconstruction of planar patches seen by omnidirectional cameras”, 2014 International Conference on Digital Image Computing: Techniques and Applications, DICTA, IEEE, 2014, 1–8