Hyperbolic parameter of approximation of quadratic algebraic lattices
Čebyševskij sbornik, Tome 21 (2020) no. 3, pp. 241-249.

Voir la notice de l'article provenant de la source Math-Net.Ru

The article considers a variant of the approximation of algebraic lattices by integer ones in the quadratic case, the set of their local minima is written out explicitly, and it is also shown that for these integer approximations of algebraic quadratic lattices it is possible to construct efficient algorithms for calculating the hyperbolic parameter.
Keywords: lattices, hyperbolic parameter, local minima of lattices.
@article{CHEB_2020_21_3_a19,
     author = {A. V. Rodionov},
     title = {Hyperbolic parameter of approximation of quadratic algebraic lattices},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {241--249},
     publisher = {mathdoc},
     volume = {21},
     number = {3},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2020_21_3_a19/}
}
TY  - JOUR
AU  - A. V. Rodionov
TI  - Hyperbolic parameter of approximation of quadratic algebraic lattices
JO  - Čebyševskij sbornik
PY  - 2020
SP  - 241
EP  - 249
VL  - 21
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2020_21_3_a19/
LA  - ru
ID  - CHEB_2020_21_3_a19
ER  - 
%0 Journal Article
%A A. V. Rodionov
%T Hyperbolic parameter of approximation of quadratic algebraic lattices
%J Čebyševskij sbornik
%D 2020
%P 241-249
%V 21
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2020_21_3_a19/
%G ru
%F CHEB_2020_21_3_a19
A. V. Rodionov. Hyperbolic parameter of approximation of quadratic algebraic lattices. Čebyševskij sbornik, Tome 21 (2020) no. 3, pp. 241-249. http://geodesic.mathdoc.fr/item/CHEB_2020_21_3_a19/

[1] Korobov N. M., Numerical-theoretic methods in approximate analysis, MTSNMO, M., 2004, 288 pp. | MR

[2] Dobrovolskii N. M., Hyperbolic zeta function of lattices, Dep. in VINITI 24.08.84, No 6090-84

[3] L. P. Dobrovolskaya, M. N. Dobrovolsky, N. M. Dobrovolsky, N. N. Dobrovolsky, Multidimensional number-theoretic grids and lattices and algorithms for finding optimal coefficients, Publishing house Tul. state ped. University named after L. N. Tolstoy, Tula, 2012, 283 pp.

[4] L. P. Dobrovolskaya, M. N. Dobrovol'skii, N. M. Dobrovolskii, N. N. Dobrovol'skii, “Hyperbolic zeta functions of grids and lattices and the calculation of optimal coefficients”, Chebyshev Collection, 13:4 (44) (2012), 4–107 | Zbl

[5] E. I. Klimova, N. N. Dobrovolsky, “Quadratic fields and quadrature formulas”, Proceedings of the XV International Conference Algebra, number theory and discrete geometry: modern problems and applications dedicated to the centenary of the birth of the doctor Mathematical Sciences, Professor of the Lomonosov Moscow State University Nikolai Mikhailovich Korobov, Publishing house of Tul. state ped. un-ta them. L. N. Tolstoy, Tula, 2018, 308–310

[6] Korobov N. M., Number-theoretic methods in approximate analysis, Fizmatgiz, M., 1963

[7] Minkowski H., “Généralisation de la théorie des fractions continues”, Ann. Sci.école Norm. Sup., 13:3 (1896), 41–60 | DOI | MR | Zbl

[8] A. V. Mikhlyaeva, “Approximation of quadratic algebraic lattices and grids by integer lattices and rational grids”, Chebyshevskii Sbornik, 19:3 (2018), 241–256 | Zbl

[9] A. V. Rodionov, “On rational approximations of algebraic grids”, Proceedings of the XV International Conference Algebra, number theory and discrete geometry: modern problems and applications dedicated to the centenary of the birth of Doctor of Physical and Mathematical Sciences, Professor of the Moscow State University named after M. V. Lomonosov Nikolai Mikhailovich Korobov, Publishing house Tul. state ped. un-ta them. L. N. Tolstoy, Tula, 2018, 321–310

[10] Sushkevich A. K., Number theory. Elementary course, 1954, 205 pp. | MR

[11] Frolov K. K., “Upper bounds for the error of quadrature formulas on classes of functions”, DAN SSSR, 231:4 (1976), 818–821 | MR | Zbl

[12] K. K. Frolov, Quadrature formulas on classes of functions, Dis. ... Cand. physical-mat. sciences, Computing Center of the USSR Academy of Sciences, M., 1979 | MR

[13] A. Ya.Khinchin, Continued Fractions, GITTL, M., 1949

[14] Sharygin I. F., “Lower bounds for the error of quadrature formulas on classes of functions”, Journal. calculated mat. and mate. physics, 7:4 (1963), 784–802