Asymptotic estimation for trigonometric sums of algebraic grids
Čebyševskij sbornik, Tome 21 (2020) no. 3, pp. 232-240.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper continues the author's research on the evaluation of trigonometric sums of an algebraic net with weights with the arbitrary weight function of the $r+1$ order. For the parameter $\vec{m}$ of the trigonometric sum $S_{M(t),\vec\rho} (\vec m)$, three cases are highlighted. If $\vec{m}$ belongs to the algebraic lattice $\Lambda (t \cdot T(\vec a))$, then the asymptotic formula is valid $$ S_{M(t),\vec\rho}(t(m,\ldots, m))=1+O\left(\frac{\ln^{s-1}\det \Lambda(t)} { (\det\Lambda(t))^{r+1}}\right). $$ If $\vec{m}$ does not belong to the algebraic lattice $\Lambda(t\cdot T(\vec a))$, then two vectors are defined $\vec{n}_\Lambda(\vec{m})=(n_1,\ldots,n_s)$ and $\vec{k}_\Lambda(\vec{m})$ from the conditions $\vec{k}_\Lambda(\vec{m})\in\Lambda$, $\vec{m}=\vec{n}_\Lambda(\vec{M})+\vec{K}_\lambda(\vec{m})$ and the product $q(\vec{n}_\lambda(\vec{m}))=\overline{n_1}\cdot\ldots\cdot\overline{n_s}$ is minimal. Asymptotic estimation is proved $$ |S_{M(t),\vec\rho}(\vec{m})|\le B_r\left(\frac{1-\delta(\vec{k}_\Lambda(\vec{m}))}{(q(\vec{n}_\Lambda(\vec{m})))^{r+1}}+O\left(\frac{q(\vec{n}_\Lambda(\vec{m}))^{r+1}\ln^{s-1}\det \Lambda(t)}{ (\det\Lambda(t))^{r+1}}\right)\right). $$
Keywords: algebraic lattices, algebraic net, trigonometric sums of algebraic net with weights, weight functions.
@article{CHEB_2020_21_3_a18,
     author = {E. M. Rarova and N. N. Dobrovol'skii and I. Yu. Rebrova},
     title = {Asymptotic estimation for trigonometric sums of algebraic grids},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {232--240},
     publisher = {mathdoc},
     volume = {21},
     number = {3},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2020_21_3_a18/}
}
TY  - JOUR
AU  - E. M. Rarova
AU  - N. N. Dobrovol'skii
AU  - I. Yu. Rebrova
TI  - Asymptotic estimation for trigonometric sums of algebraic grids
JO  - Čebyševskij sbornik
PY  - 2020
SP  - 232
EP  - 240
VL  - 21
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2020_21_3_a18/
LA  - ru
ID  - CHEB_2020_21_3_a18
ER  - 
%0 Journal Article
%A E. M. Rarova
%A N. N. Dobrovol'skii
%A I. Yu. Rebrova
%T Asymptotic estimation for trigonometric sums of algebraic grids
%J Čebyševskij sbornik
%D 2020
%P 232-240
%V 21
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2020_21_3_a18/
%G ru
%F CHEB_2020_21_3_a18
E. M. Rarova; N. N. Dobrovol'skii; I. Yu. Rebrova. Asymptotic estimation for trigonometric sums of algebraic grids. Čebyševskij sbornik, Tome 21 (2020) no. 3, pp. 232-240. http://geodesic.mathdoc.fr/item/CHEB_2020_21_3_a18/

[1] N. N. Dobrovol'skii, “On two asymptotic formulas in the theory of hyperbolic Zeta function of lattices”, Chebyshevskii sbornik, 21:3 (2018), 109–134 | MR | Zbl

[2] Rarova E. M., “Decomposition of the trigonometric sum of a grid with weights in a series by lattice points”, Proceedings of Tula state University. Natural science, 2014, no. 1-1, 37–49

[3] Rarova E. M., “Trigonometric grid sums with weights for integer lattice”, Proceedings of Tula state University. Natural science, 2014, no. 3, 34–39

[4] Rarova E. M., “Trigonometric sums of algebraic nets”, Algebra, number theory and discrete geometry: modern problems and applications, Proceedings of the XIII International conference dedicated to the eighty-fifth anniversary of the birth of Professor Sergei Sergeevich Ryshkov, Tula state pedagogical University L. N. Tolstoy, 2015, 356–359

[5] Rarova E. M., “Weighted number of points of algebraic net”, Chebyshevskii sbornik, 19:1 (2018), 200–219 | MR | Zbl

[6] E. M. Rarova, “Trigonometric sums of nets of algebraic lattices”, Chebyshevskii sbornik, 20:2 (2019), 399–405 | MR | Zbl

[7] Rebrov E. D., “Quadrature formulas with modified algebraic grids”, Chebyshevskii sbornik, 13:3(43) (2012), 53–90 | Zbl

[8] Rebrova I. Yu., Dobrovolsky N. M., Dobrovolsky N. N., Balaba I. N., Yesayan A. R., Basalov Yu. A., Numerical theoretic method in approximate analysis and its implementation in POIVS “TMK”, Monogr. In Under 2 hours. ed., v. I, Publishing house of Tula. state PED. UN-TA im. L. N. Tolstoy, Tula, 2016, 232 pp. | MR