Asymptotic estimation for trigonometric sums of algebraic grids
Čebyševskij sbornik, Tome 21 (2020) no. 3, pp. 232-240

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper continues the author's research on the evaluation of trigonometric sums of an algebraic net with weights with the arbitrary weight function of the $r+1$ order. For the parameter $\vec{m}$ of the trigonometric sum $S_{M(t),\vec\rho} (\vec m)$, three cases are highlighted. If $\vec{m}$ belongs to the algebraic lattice $\Lambda (t \cdot T(\vec a))$, then the asymptotic formula is valid $$ S_{M(t),\vec\rho}(t(m,\ldots, m))=1+O\left(\frac{\ln^{s-1}\det \Lambda(t)} { (\det\Lambda(t))^{r+1}}\right). $$ If $\vec{m}$ does not belong to the algebraic lattice $\Lambda(t\cdot T(\vec a))$, then two vectors are defined $\vec{n}_\Lambda(\vec{m})=(n_1,\ldots,n_s)$ and $\vec{k}_\Lambda(\vec{m})$ from the conditions $\vec{k}_\Lambda(\vec{m})\in\Lambda$, $\vec{m}=\vec{n}_\Lambda(\vec{M})+\vec{K}_\lambda(\vec{m})$ and the product $q(\vec{n}_\lambda(\vec{m}))=\overline{n_1}\cdot\ldots\cdot\overline{n_s}$ is minimal. Asymptotic estimation is proved $$ |S_{M(t),\vec\rho}(\vec{m})|\le B_r\left(\frac{1-\delta(\vec{k}_\Lambda(\vec{m}))}{(q(\vec{n}_\Lambda(\vec{m})))^{r+1}}+O\left(\frac{q(\vec{n}_\Lambda(\vec{m}))^{r+1}\ln^{s-1}\det \Lambda(t)}{ (\det\Lambda(t))^{r+1}}\right)\right). $$
Keywords: algebraic lattices, algebraic net, trigonometric sums of algebraic net with weights, weight functions.
@article{CHEB_2020_21_3_a18,
     author = {E. M. Rarova and N. N. Dobrovol'skii and I. Yu. Rebrova},
     title = {Asymptotic estimation for trigonometric sums of algebraic grids},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {232--240},
     publisher = {mathdoc},
     volume = {21},
     number = {3},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2020_21_3_a18/}
}
TY  - JOUR
AU  - E. M. Rarova
AU  - N. N. Dobrovol'skii
AU  - I. Yu. Rebrova
TI  - Asymptotic estimation for trigonometric sums of algebraic grids
JO  - Čebyševskij sbornik
PY  - 2020
SP  - 232
EP  - 240
VL  - 21
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2020_21_3_a18/
LA  - ru
ID  - CHEB_2020_21_3_a18
ER  - 
%0 Journal Article
%A E. M. Rarova
%A N. N. Dobrovol'skii
%A I. Yu. Rebrova
%T Asymptotic estimation for trigonometric sums of algebraic grids
%J Čebyševskij sbornik
%D 2020
%P 232-240
%V 21
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2020_21_3_a18/
%G ru
%F CHEB_2020_21_3_a18
E. M. Rarova; N. N. Dobrovol'skii; I. Yu. Rebrova. Asymptotic estimation for trigonometric sums of algebraic grids. Čebyševskij sbornik, Tome 21 (2020) no. 3, pp. 232-240. http://geodesic.mathdoc.fr/item/CHEB_2020_21_3_a18/