Approximation of quadratic algebraic lattices by integer lattices~---~II
Čebyševskij sbornik, Tome 21 (2020) no. 3, pp. 215-222
Voir la notice de l'article provenant de la source Math-Net.Ru
This paper is devoted to the approximation of a quadratic algebraic lattice by an integer lattice. It calculates the distances between a quadratic algebraic lattice and an integer lattice when they are given by the numerator and denominator of a suitable fraction to the square root of the discriminant $d$ — of a square-free natural number.
The results of this work allow us to study questions about the best approximations of quadratic algebraic lattices by integer lattices.
Keywords:
quadratic fields, approximation of algebraic grids, quality function, generalized parallelepipedal grid.
@article{CHEB_2020_21_3_a16,
author = {A. N. Kormacheva},
title = {Approximation of quadratic algebraic lattices by integer {lattices~---~II}},
journal = {\v{C}eby\v{s}evskij sbornik},
pages = {215--222},
publisher = {mathdoc},
volume = {21},
number = {3},
year = {2020},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/CHEB_2020_21_3_a16/}
}
A. N. Kormacheva. Approximation of quadratic algebraic lattices by integer lattices~---~II. Čebyševskij sbornik, Tome 21 (2020) no. 3, pp. 215-222. http://geodesic.mathdoc.fr/item/CHEB_2020_21_3_a16/