Differential inclusions with mean derivatives, having aspherical right-hand sides
Čebyševskij sbornik, Tome 21 (2020) no. 2, pp. 84-93.

Voir la notice de l'article provenant de la source Math-Net.Ru

On flat $ n $-dimensional torus we study stochastic differential inclusions with mean derivatives, for which the right-hand sides have, generally speaking, not convex (aspherical) values. A subclass of such inclusions is distinguished for which there exists a sequence of $\varepsilon$-approximations, converging point-wise to a Borel measurable selector. On this base a solution existence theorem is obtained.
Keywords: mean derivatives, differential inclusions, aspherical right-hand sides, point-wise convergence, solution existence.
@article{CHEB_2020_21_2_a7,
     author = {Yu. E. Gliklikh},
     title = {Differential inclusions with mean derivatives, having aspherical right-hand sides},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {84--93},
     publisher = {mathdoc},
     volume = {21},
     number = {2},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2020_21_2_a7/}
}
TY  - JOUR
AU  - Yu. E. Gliklikh
TI  - Differential inclusions with mean derivatives, having aspherical right-hand sides
JO  - Čebyševskij sbornik
PY  - 2020
SP  - 84
EP  - 93
VL  - 21
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2020_21_2_a7/
LA  - en
ID  - CHEB_2020_21_2_a7
ER  - 
%0 Journal Article
%A Yu. E. Gliklikh
%T Differential inclusions with mean derivatives, having aspherical right-hand sides
%J Čebyševskij sbornik
%D 2020
%P 84-93
%V 21
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2020_21_2_a7/
%G en
%F CHEB_2020_21_2_a7
Yu. E. Gliklikh. Differential inclusions with mean derivatives, having aspherical right-hand sides. Čebyševskij sbornik, Tome 21 (2020) no. 2, pp. 84-93. http://geodesic.mathdoc.fr/item/CHEB_2020_21_2_a7/

[1] E. Nelson, “Derivation of the Schrödinger equation from Newtonian mechanics”, Phys. Reviews, 150:4 (1966), 1079–1085 | DOI

[2] E. Nelson, Dynamical theory of Brownian motion, Princeton University Press, Princeton, 1967 | MR

[3] E. Nelson, Quantum fluctuations, Princeton University Press, Princeton, 1985 | MR | Zbl

[4] Myshkis A. D., “Generalization of the theorem on the stationary point of the dynamical system inside a closed trajectory”, Mat.sbornik, 34:3 (1954), 525–540 | Zbl

[5] Yu.G. Borisovich, Yu.E. Gliklikh, “On Lefschetz number for a certain class of set-valued maps”, 7-th Summer Mathematical School, ed. Trokhimchuk Yu.Yu., Kiev, 1970, 283–294 (Russian) | Zbl

[6] Yu.E. Gliklikh, “Fixed points of set-valued mappings with nonconvex values and the rotation of set-valued vector fields”, Sbornik Trudov Aspirantov Matematicheskogo Fakul'teta, ed. Borisovich Yu.G., Voronezh University, Voronezh, 1972, 30–38 (Russian)

[7] Kryszewski W., Homotopy properties of set-valued mappings, Torun University, Torun, 1997, 243 pp. | Zbl

[8] J.-P. Aubin, A. Cellina, Differential Inclusions. Set-valued maps and viability theory, Springer-Verlag, Berlin et al., 1984, 342 pp. | MR | Zbl

[9] Borisovich Yu.G., Gel'man B.D., Myshkis A.D., Obukhovskiĭ V. V., Introduction to the theory of set-valued mappings and differential inclusions, KomKniga, M., 2005, 216 pp. (in Russian)

[10] M. Kamenskiĭ, V. Obukhovskiĭ, P. Zecca, Condensing Multivalued Maps and Semilinear Differential Inclusions in Banach Spaces, Walter de Gruyter, Berlin–New York, 2001, 231 pp. | MR

[11] Parthasarathy K.R., Introduction to Probability and Measure, Springer-Verlag, New York, 1978, 344 pp. | MR

[12] Gliklikh Yu.E., Global and stochastic analysis with applications to mathematical physics, Springer-Verlag, London, 2011, 460 pp. | MR | Zbl

[13] S.V. Azarina, Yu.E. Gliklikh, A.V. Obukhovskii, “Solvability of Langevin differential inclusions with set-valued diffusion terms on Riemannian manifolds”, Applicable Analysis, 86:9 (2007), 1105–1116 | DOI | MR | Zbl

[14] S.V. Azarina, Yu.E. Gliklikh, “Stochastic differential equations and inclusions with mean derivatives relative to the past”, International Journal of Difference Equations, 4:1 (2009), 27–41 | MR

[15] S.V. Azarina, Yu.E. Gliklikh, “Differential inclusions with mean derivatives”, Dynamic Systems and Applications, 16:1 (2007), 49–71 | MR | Zbl

[16] Gihman I. I., Skorohod A. V., Theory of stochastic Processes, v. 3, Springer-Verlag, New York, 1979, 495 pp. | MR | MR | Zbl

[17] Yosida Y., Functional Analysis, Springer-Verlag, Berlin et al., 1965 | MR | Zbl