Differential inclusions with mean derivatives, having aspherical right-hand sides
Čebyševskij sbornik, Tome 21 (2020) no. 2, pp. 84-93

Voir la notice de l'article provenant de la source Math-Net.Ru

On flat $ n $-dimensional torus we study stochastic differential inclusions with mean derivatives, for which the right-hand sides have, generally speaking, not convex (aspherical) values. A subclass of such inclusions is distinguished for which there exists a sequence of $\varepsilon$-approximations, converging point-wise to a Borel measurable selector. On this base a solution existence theorem is obtained.
Keywords: mean derivatives, differential inclusions, aspherical right-hand sides, point-wise convergence, solution existence.
@article{CHEB_2020_21_2_a7,
     author = {Yu. E. Gliklikh},
     title = {Differential inclusions with mean derivatives, having aspherical right-hand sides},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {84--93},
     publisher = {mathdoc},
     volume = {21},
     number = {2},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2020_21_2_a7/}
}
TY  - JOUR
AU  - Yu. E. Gliklikh
TI  - Differential inclusions with mean derivatives, having aspherical right-hand sides
JO  - Čebyševskij sbornik
PY  - 2020
SP  - 84
EP  - 93
VL  - 21
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2020_21_2_a7/
LA  - en
ID  - CHEB_2020_21_2_a7
ER  - 
%0 Journal Article
%A Yu. E. Gliklikh
%T Differential inclusions with mean derivatives, having aspherical right-hand sides
%J Čebyševskij sbornik
%D 2020
%P 84-93
%V 21
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2020_21_2_a7/
%G en
%F CHEB_2020_21_2_a7
Yu. E. Gliklikh. Differential inclusions with mean derivatives, having aspherical right-hand sides. Čebyševskij sbornik, Tome 21 (2020) no. 2, pp. 84-93. http://geodesic.mathdoc.fr/item/CHEB_2020_21_2_a7/