Peculiar spaces for relativistic fields
Čebyševskij sbornik, Tome 21 (2020) no. 2, pp. 37-42
Cet article a éte moissonné depuis la source Math-Net.Ru
We study how quantum field theory models are modified under the reparametrizations of the space-time coordinates and some simultaneous transformations of the field function. The transformations that turn the action of the massive field in the Minkowski space-time into the action of the massless field in some curved space are presented.
Keywords:
Klein–Gordon–Fock equation reparametrization of the space-time transformation of field functions.
@article{CHEB_2020_21_2_a4,
author = {V. V. Belokurov and E. T. Shavgulidze},
title = {Peculiar spaces for relativistic fields},
journal = {\v{C}eby\v{s}evskij sbornik},
pages = {37--42},
year = {2020},
volume = {21},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CHEB_2020_21_2_a4/}
}
V. V. Belokurov; E. T. Shavgulidze. Peculiar spaces for relativistic fields. Čebyševskij sbornik, Tome 21 (2020) no. 2, pp. 37-42. http://geodesic.mathdoc.fr/item/CHEB_2020_21_2_a4/
[1] Bogoliubov N. N., Shirkov D. V., Introduction to the Theory of Quantized Fields, Nauka, M., 1984 (in Russian) | MR
[2] Dubrovin B.A., Fomenko A.T., Novikov S.T., Modern geometry - methods and applications, v. I, Grad. Texts in Math., 93, The geometry of surfaces, transformation groups, and fields, Springer-Verlag, New York, 1992 | DOI | MR | Zbl
[3] Belokurov V.V., Shavgulidze E.T., “Extraordinary Properties of Functional Integrals and Groups of Diffeomorphisms”, Physics of Particles and Nuclei, 48:2 (2017), 267–286 | DOI