On the properties of the cobordism group of stably-framed immersions in codimension~$k$
Čebyševskij sbornik, Tome 21 (2020) no. 2, pp. 26-36.

Voir la notice de l'article provenant de la source Math-Net.Ru

The notion “intermediate bordism group”, which was introduced by P. J. Eccles to investigate filtrations in stable homotopy group of spheres, is considered. А new notion “cobordism groups of stable-framed immersions” is introduced. The classifying space for the new groups is constructed, ranks of the groups are calculated. Hopf invariants and the Kahn-Priddy homomorphism are generalized for cobordism groups of stable-framed immersions.
Keywords: stable homotopy groups of spheres, immersion.
@article{CHEB_2020_21_2_a3,
     author = {P. M. Akhmet'ev},
     title = {On the properties of the cobordism group of stably-framed immersions in codimension~$k$},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {26--36},
     publisher = {mathdoc},
     volume = {21},
     number = {2},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2020_21_2_a3/}
}
TY  - JOUR
AU  - P. M. Akhmet'ev
TI  - On the properties of the cobordism group of stably-framed immersions in codimension~$k$
JO  - Čebyševskij sbornik
PY  - 2020
SP  - 26
EP  - 36
VL  - 21
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2020_21_2_a3/
LA  - ru
ID  - CHEB_2020_21_2_a3
ER  - 
%0 Journal Article
%A P. M. Akhmet'ev
%T On the properties of the cobordism group of stably-framed immersions in codimension~$k$
%J Čebyševskij sbornik
%D 2020
%P 26-36
%V 21
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2020_21_2_a3/
%G ru
%F CHEB_2020_21_2_a3
P. M. Akhmet'ev. On the properties of the cobordism group of stably-framed immersions in codimension~$k$. Čebyševskij sbornik, Tome 21 (2020) no. 2, pp. 26-36. http://geodesic.mathdoc.fr/item/CHEB_2020_21_2_a3/

[1] P.M.Akhmet'ev, O.D.Frolkina, On properties of skew-framed immersions cobordism groups, arXiv: 1712.00959v1

[2] W.Browder, “The Kervaire invariant of framed manifolds and its generalization”, Ann. of Math. (2), 90 (1969), 157–186 | DOI | MR | Zbl

[3] P.Griffiths, J.Morgan, Rational Homotopy Theory and Differential Forms, Progress in Mathematics, 16, Birkhuser, Boston, Mass., 1981 | MR | MR | Zbl

[4] M.Mahowald, “A new infinite family in $_{2}\pi_{\ast}^S$”, Topology, 16 (1977), 249–256 | DOI | MR | Zbl

[5] Mosher R. S. Tangora M. C., Cohomology operations and their applications in homotopy theory, Harper and Row, N.Y., 1968 ; Mir, 1970 | MR | Zbl

[6] P.J.Eccles, “Codimension One Immersions and the Kervaire Invariant One Problem”, Math. Proc. Cambridge Phil. Soc., 90 (1981), 483–493 | DOI | MR | Zbl

[7] P. J. Eccles, “Representing framed bordism classes by manifolds embedded in low codimension”, Geometric Applications of Homotopy Theory, Proc. Conf. (Evanston, Ill, 1977), v. I, Lecture Notes in Math., 657, Springer, Berlin, 1978, 150–155 | DOI | MR

[8] P. J. Eccles, “Filtering framed bordism by embedding codimension”, J. London Math. Soc. (2), 19 (1979), 163–169 | DOI | MR | Zbl

[9] S. Gitler, D.Handel, “The projective Stiefel manifolds, I”, Topology, 7, 39–45 | DOI | MR

[10] V.P. Snaith, Stable homotopy around the Arf-Kervaire invariant, Birkhauser Progress on Math., 273, 2009 | MR | Zbl

[11] A.Szucs, T.Terpai, “Singularities and stable homotopy groups of spheres. II”, Journal of Singularities, 17 (2018), 28–57 | MR | Zbl