The mean-value theorem for trigonometric sums on the sequence of binomial type polynomials
Čebyševskij sbornik, Tome 21 (2020) no. 2, pp. 403-416
Voir la notice de l'article provenant de la source Math-Net.Ru
The mean-value theorem for trigonometric sums on the sequence of binomial type polynomials was proved. As known, the classical I. M. Vinogradov mean-value theorem belong to the sequence of polynomials of the form $\{x^n, n\geq 0\}.$ Estimates of sums of the kind $$ \sum_{m\leq P}e^{2\pi if(m)}, f(m)=\sum_{k=0}^n\alpha_kp_k(m), $$ are the important application of the finding mean-value theorem. Here $p_k(x)$ is the sequence integer-valued polynomials of the binomial type, but a set of numbers $(\alpha_1\alpha_1,\dots,\alpha_n)$ represents a point of the $n$-fold unit cube $\Omega: 0\leq \alpha_1,\dots,\alpha_n1.$
Keywords:
the mean-value I. M. Vinogradov theorem, the sequence of polynomials of the binomial type, polynomials of Abel, Laguerre, lowers and upper factorials, exponential polynomials.
@article{CHEB_2020_21_2_a26,
author = {V. N. Chubarikov},
title = {The mean-value theorem for trigonometric sums on the sequence of binomial type polynomials},
journal = {\v{C}eby\v{s}evskij sbornik},
pages = {403--416},
publisher = {mathdoc},
volume = {21},
number = {2},
year = {2020},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/CHEB_2020_21_2_a26/}
}
TY - JOUR AU - V. N. Chubarikov TI - The mean-value theorem for trigonometric sums on the sequence of binomial type polynomials JO - Čebyševskij sbornik PY - 2020 SP - 403 EP - 416 VL - 21 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CHEB_2020_21_2_a26/ LA - ru ID - CHEB_2020_21_2_a26 ER -
V. N. Chubarikov. The mean-value theorem for trigonometric sums on the sequence of binomial type polynomials. Čebyševskij sbornik, Tome 21 (2020) no. 2, pp. 403-416. http://geodesic.mathdoc.fr/item/CHEB_2020_21_2_a26/