The mean-value theorem for trigonometric sums on the sequence of binomial type polynomials
Čebyševskij sbornik, Tome 21 (2020) no. 2, pp. 403-416.

Voir la notice de l'article provenant de la source Math-Net.Ru

The mean-value theorem for trigonometric sums on the sequence of binomial type polynomials was proved. As known, the classical I. M. Vinogradov mean-value theorem belong to the sequence of polynomials of the form $\{x^n, n\geq 0\}.$ Estimates of sums of the kind $$ \sum_{m\leq P}e^{2\pi if(m)}, f(m)=\sum_{k=0}^n\alpha_kp_k(m), $$ are the important application of the finding mean-value theorem. Here $p_k(x)$ is the sequence integer-valued polynomials of the binomial type, but a set of numbers $(\alpha_1\alpha_1,\dots,\alpha_n)$ represents a point of the $n$-fold unit cube $\Omega: 0\leq \alpha_1,\dots,\alpha_n1.$
Keywords: the mean-value I. M. Vinogradov theorem, the sequence of polynomials of the binomial type, polynomials of Abel, Laguerre, lowers and upper factorials, exponential polynomials.
@article{CHEB_2020_21_2_a26,
     author = {V. N. Chubarikov},
     title = {The mean-value theorem for trigonometric sums on the sequence of binomial type polynomials},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {403--416},
     publisher = {mathdoc},
     volume = {21},
     number = {2},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2020_21_2_a26/}
}
TY  - JOUR
AU  - V. N. Chubarikov
TI  - The mean-value theorem for trigonometric sums on the sequence of binomial type polynomials
JO  - Čebyševskij sbornik
PY  - 2020
SP  - 403
EP  - 416
VL  - 21
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2020_21_2_a26/
LA  - ru
ID  - CHEB_2020_21_2_a26
ER  - 
%0 Journal Article
%A V. N. Chubarikov
%T The mean-value theorem for trigonometric sums on the sequence of binomial type polynomials
%J Čebyševskij sbornik
%D 2020
%P 403-416
%V 21
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2020_21_2_a26/
%G ru
%F CHEB_2020_21_2_a26
V. N. Chubarikov. The mean-value theorem for trigonometric sums on the sequence of binomial type polynomials. Čebyševskij sbornik, Tome 21 (2020) no. 2, pp. 403-416. http://geodesic.mathdoc.fr/item/CHEB_2020_21_2_a26/

[1] Pincherle S., Amaldi U., Le Operazioni Distributive, Zanichelli, Bologna, 1900

[2] Hurwitz A., “Über Abel's Verallgemeinerung der binomischen Formel”, Acta Math., 26 (1902), 199–203 | DOI | MR

[3] Sheffer I. M., “Some properties of polynomials of type zero”, Duke Math., 5 (1939), 590–622 | DOI | MR

[4] Stefensen J. F., “The Poweroid, an Extension of the Mathematical of Power”, Acta Math., 73 (1941), 333–366 | DOI | MR

[5] Touchard J., “Nombres Exponentiels et Nombres de Bernuolli”, Canad.J. Math., 8 (1956), 305–320 | DOI | MR | Zbl

[6] Riordan J., An introduction to combinatorial analysis, Publ. House of a foreign literature, M., 1963

[7] Riordan J., “Inverse Relations and Combinatorial Identities”, Amer. Math. Monthly, 71 (1964), 485–498 | DOI | MR | Zbl

[8] Riordan J., Combinatorial Identities, Wiley, New York, 1968 | MR | Zbl

[9] Mullin R., Rota G.-C., “On the Foundations of Combinatorial Theory: III. Theory of Binomial Enumeration”, Graph Theory and its Applications, 1970, 168–213 | MR

[10] Vinogradov I. M., The method of trigonometric sums in the theory of numbers, 2nd Edition, correct. and supplement., Fizmatlit, M., 1980, 144 pp.

[11] Karatsuba A. A., Korobov N. M., “On the mean-value theorem”, Doklady AN SSSR, 149:2 (1963) | Zbl

[12] Karatsuba A. A., “Mean-value theorem and complete trigonometric sums”, Izvestija. AN SSSR, Ser. Mathem., 30:1 (1966) | Zbl

[13] Arkhipov G. I, Selected papers, Publ. House of the Orjol University, Orjol, 2013, 464 pp.

[14] Arkhipov G. I., Sadovnichii V. A., Chubarikov V. N., Lektsii po matematicheskomu analizu, 4-e izd., ispr. — M.: Drofa, 2004, 640 pp.

[15] Arkhipov G. I.,, Karatsuba A. A., Chubarikov V. N., The theory of multiple trigonometric sums, Nauka. Fizmatlit, M., 1987, 368 pp. | MR

[16] Arkhipov G. I., Chubarikov V. N., Karatsuba A. A., Trigonometric sums in number theory and analysis, De Gruyter expositions in mathematics, 39, Walter de Gruyter, Berlin–New York, 2004, 554 pp. | MR | Zbl

[17] Chubarikov V. N., “Multiple trigonometric sums with primes”, Doklady AN SSSR, 278:2 (1984), 302–304 | MR | Zbl

[18] Chubarikov V. N., “Estimates of multiple trigonometric sums with primes”, Izvestija. AN SSSR, Ser. Matem., 49:5 (1985), 1031–1067 | MR | Zbl