On the retracts of finite-dimensional spaces, generated by coercive mappings
Čebyševskij sbornik, Tome 21 (2020) no. 2, pp. 139-143.

Voir la notice de l'article provenant de la source Math-Net.Ru

Coercive continuous injective mappings acting from one linear finite-dimensional space to another are considered. It is proved that the images of these mappings are retracts of linear spaces.
Keywords: retract, coercive mapping, uniform regularity.
@article{CHEB_2020_21_2_a10,
     author = {S. E. Zhukovskiy},
     title = {On the retracts of finite-dimensional spaces, generated by coercive mappings},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {139--143},
     publisher = {mathdoc},
     volume = {21},
     number = {2},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2020_21_2_a10/}
}
TY  - JOUR
AU  - S. E. Zhukovskiy
TI  - On the retracts of finite-dimensional spaces, generated by coercive mappings
JO  - Čebyševskij sbornik
PY  - 2020
SP  - 139
EP  - 143
VL  - 21
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2020_21_2_a10/
LA  - en
ID  - CHEB_2020_21_2_a10
ER  - 
%0 Journal Article
%A S. E. Zhukovskiy
%T On the retracts of finite-dimensional spaces, generated by coercive mappings
%J Čebyševskij sbornik
%D 2020
%P 139-143
%V 21
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2020_21_2_a10/
%G en
%F CHEB_2020_21_2_a10
S. E. Zhukovskiy. On the retracts of finite-dimensional spaces, generated by coercive mappings. Čebyševskij sbornik, Tome 21 (2020) no. 2, pp. 139-143. http://geodesic.mathdoc.fr/item/CHEB_2020_21_2_a10/

[1] Engelking R., General topology, Mir, M., 1986 (in Russian) | MR

[2] Fomenko A. T., Fuks D. B., A course in homotopic topology, Nauka, M., 1989 | MR

[3] Arutyunov A. V., Zhukovskiy S. E., “Application of Methods of Ordinary Differential Equations to Global Inverse Function Theorems”, Differential Equations, 55:4 (2019), 437–448 | DOI | MR | Zbl

[4] Ortega J., Reinboldt V., Iterative methods for solving nonlinear systems of equations with many variables, Mir Publ., M., 1975