The Hensel--Shafarevich canonical basis in Honda formal modules
Čebyševskij sbornik, Tome 21 (2020) no. 1, pp. 368-373

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we construct Hensel–Shafarevich generating set in Honda formal modules over a higher dimensional field. Later, that should allow us to compute Hilbert symbol in this case.
Keywords: formal groups, formal modules.
@article{CHEB_2020_21_1_a24,
     author = {S. V. Vostokov and R. P. Vostokova and E. V. Ikonnikova},
     title = {The {Hensel--Shafarevich} canonical basis in {Honda} formal modules},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {368--373},
     publisher = {mathdoc},
     volume = {21},
     number = {1},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2020_21_1_a24/}
}
TY  - JOUR
AU  - S. V. Vostokov
AU  - R. P. Vostokova
AU  - E. V. Ikonnikova
TI  - The Hensel--Shafarevich canonical basis in Honda formal modules
JO  - Čebyševskij sbornik
PY  - 2020
SP  - 368
EP  - 373
VL  - 21
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2020_21_1_a24/
LA  - ru
ID  - CHEB_2020_21_1_a24
ER  - 
%0 Journal Article
%A S. V. Vostokov
%A R. P. Vostokova
%A E. V. Ikonnikova
%T The Hensel--Shafarevich canonical basis in Honda formal modules
%J Čebyševskij sbornik
%D 2020
%P 368-373
%V 21
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2020_21_1_a24/
%G ru
%F CHEB_2020_21_1_a24
S. V. Vostokov; R. P. Vostokova; E. V. Ikonnikova. The Hensel--Shafarevich canonical basis in Honda formal modules. Čebyševskij sbornik, Tome 21 (2020) no. 1, pp. 368-373. http://geodesic.mathdoc.fr/item/CHEB_2020_21_1_a24/